

Volume 1, Issue 2, 2006

Everything is Byte

+Mala
May 2006

Abstract
Everything is byte. Of course, this won't sound SO strange to most of you. After all, everything which resides on a computer's HD,
whether it is a sound, a movie or this plain text file, must be first converted to binary format. This takes us to some less obvious
considerations: if everything shares the same format, why do I run some files while I play others? Can I read an executable? Can I listen
to an image? The answers are, respectively, because there is something which tells the system what to do; of course you can!

EVERYTHING IS BYTE

This disclaimer is not meant to sidestep the responsibility for the material we will share with you, but rather is
designed to emphasize the purpose of this CodeBreakers Magazine feature, which is to provide information for
your own purposes. The subjects presented have been chosen for their educational value. The information
contained herein consists of Secure Software Engineering, Software Security Engineering, Software Management,
Security Analysis, Algorithms, Virus-Research, Software-Protection and Reverse Code Engineering,
Cryptanalysis, White Hat and Black Hat Content, and is derived from authors of academically institutions,
commercials, organizations, as well as private persons. The information should not be considered to be completely
error-free or to include all relevant information; nor should it be used as an exclusive basis for decision-making.
The user understands and accepts that if CodeBreakers Magazine were to accept the risk of harm to the user from
use of this information, it would not be able to make the information available because the cost to cover the risk of
harms to all users would be too great. Thus, use of the information is strictly voluntary and at the users sole risk.

The information contained herein is not a license, either expressly or impliedly, to any intellectual property owned
or controlled by any of the authors or developers of CodeBreakers Magazine. The information contained herein is
provided on an "AS IS" basis and to the maximum extent permitted by applicable law, this information is provided
AS IS AND WITH ALL FAULTS, and the authors and developers of CodeBreakers Magazine hereby disclaim all
other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any)
implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or
completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence, all with
regard to the contribution.

ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO
CODEBREAKERS MAGAZINE.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF CodeBreakers Magazine BE LIABLE TO ANY
OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS,
LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
PUNITIVE OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR
OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO
CODEBREAKERS MAGAZINE, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE
POSSIBILITY OF SUCH DAMAGE.

© 2006 CodeBreakers Magazine Page 2 of 12

EVERYTHING IS BYTE

1 Foreword

Some of you have waited much, much time to read
this file; many, on the other side, just didn't mind. For
the first ones, I must apologize and say that I have no
excuses - I just lost my will to finish this file and
spent months while trying to find it again. For the
others, I hope that this text will teach you something
you didn't know and that maybe you will be with the
first ones next time.

One more thing: the idea of patching an exe with an
image editor is NOT mine. I just found it on the web
some months ago and I really don't remember the
address... but I wanted you to know that someone else
had the original idea. If you happen to find that page,
let me know and I will add that address to this
tutorial.

2 Everything Is Byte

Everything is byte. Of course, this won't sound SO
strange to most of you. After all, everything which
resides on a computer's HD, whether it is a sound, a
movie or this plain text file, must be first converted to
binary format. This takes us to some less obvious
considerations: if everything shares the same format,
why do I run some files while I play others? Can I
read an executable? Can I listen to an image? The
answers are, respectively, because there is something
which tells the system what to do; of course you can;
of course you can... have you ever tried to write, at
the Linux prompt:

cat /usr/bin/netscape >/dev/dsp

3 Structure And Chaos: Headers Vs.

Extensions

Now, what makes the OS understand what kind of
file it is dealing with? Well, there are different ways:
the buggiest one, for instance, is just looking at the
file extension; a better one, instead, is giving a look at
the file header or at a particular sequence of bytes
which (almost always) exactly identifies the file type.

Guessing which one is used by Windows is left as an
exercise to the reader ;)

Just look at this example: on your windows disk (if
you have one), find all the files that have ".jar"
extension; then, copy one of them in another place
and rename it as ".zip". Now double click on it and -
voila' – it opens correctly as a ZIP file! Then, copy a
file called c:\windows\system\shdoclc.dll in another
place and rename it as shdoclc.html. If you double
click it (I cannot assure it won't damage your system,
some strange things will happen!

4 Why? What happened?

In the first case, JAR files are nothing more than ZIP
files with another extension: so, since Windows
recognizes files according to their extensions, it's not
able to open it unless you change its filename in
whatever.zip. In the second case, shdoclc.dll contains
some html code to generate different pages, but is
NOT an HTML document: it's an executable, so if
you open it as a .html you will see some strange
codes... and a strange browser behaviour, since it's
parsing the content of different html pages all pasted
together.

As you may understand, this method is quite buggy,
because it doesn't let you really understand what
you're working with. The worst case happens when
some viruses copy themselves by mail as an
attachment with a double extension (such as .txt.com
or .mp3.pif): if you've left the "hide extension for
know filetypes" option active, you might not notice
they're executables and run them with a double click.
In other cases, instead, this limitation in extension
recognition may be useful for us, as you'll see later.

What can you do to be sure you're correctly
identifying a file? Even if in some cases you CAN'T
be sure, you can have better chances by using some
tools called "file analyzers", running both under
Windows and Linux. While under Linux you have the
great FILE command, which will be described in
detail in the next section.

© 2006 CodeBreakers Magazine Page 3 of 12

EVERYTHING IS BYTE

5 Findig Structure in a File

5.1 The FILE Command

"file" (yes, the right command name is all lowercase!)
is a great Unix file analyzer which, instead of just
looking at name extensions, does various tests on
filesystem, file data and (if data is text) language. The
"data" test is the most interesting for us: during this
test, FILE searches for particular data sequences
(called "magic numbers") inside the files to
understand their type. Even if it isn't perfect, it's still a
very good tool and because of its structure it's the
best one if you want to learn how file recognition
works. If you type "man file", but still better "man
magic", you will easily learn to look inside the
configuration file (called "magic") and understand
file types even without using any program!

Magic file format (under my Debian it's located in
/usr/share/misc/magic, but you can even find it online
searching Google for "/usr/share/misc/magic" AND
"177ELF") is quite easy: every line is made up of the
following fields

OFFSET
This is a number specifying the offset, in bytes, of the
data which is to be tested inside the file. It can be
preceded by one or more ">", which indicate the level
of the test: if there are no ">" the test is level 0 and
only if it succeeds tests of level 1 (one ">") are
evaluated, followed by level 2 tests (">>") and so on.
In a test whose level is higher than 1 you can also
find the character "&" before the offset: this means
you don't have to consider the offset as absolute, but
as relative to the offset of the preceding higher level
test.

Here's a little example: if you give a look at ELF
section inside magic file, you'll be presented with the
following

 0 string 177ELF ELF
 >4 byte 0 invalid class
 >4 byte 1 32-bit
 ...

NOTE: 177 is the value of a byte IN OCTAL (0x7F,
127 dec).

This means: if the file starts with byte 0x7F, followed
by the string "ELF", then it's an ELF file; then, if at
offset 4 it has a byte whose value is 1, then it's a 32-
bit ELF, while if it's 0 it's an invalid class ELF file.

TYPE
From the previous example you have seen how the
TYPE field is used yet: it just contains the type of the
data to be tested. The possible values are

byte:
A one-byte value

string:
A string of bytes

short, beshort, leshort:
A two-byte value (on most systems) in this
machine's native byte order, in big-endian order
(be-) ora in little-endian order

(le-)long, belong, lelong:
A four-byte value (on most systems) in this
machine's native byte order, in big-endian
order(be-) ora in little-endian order (le-)

date, bedate, ledate:
A four-byte value (on most systems) in this
machine's native byte order, in big-endian order
(be-) ora in little-endian order (le-), which is
interpreted as a UNIX date

TEST
This is the value to be compared with the value from
the file. If the type is numeric, the value is specified
in C form; if it's a string, it is specified as a C string
with the usual escapes permitted (such as n for new
line). On the test value, depending on its type, you
can apply some operators, such as =, (which work for
numbers and strings), & and ^ (AND and NOT,
which work only with numbers and require some bits
to be set or not). Give a look at the man page for a
more detailed explanation.

MESSAGE
This is the message to be printed if the test succeeds.
If the string contains a printf format specification
(such as "%s"), the value from the file is printed
using the message as the format string.

Here are just some of the things that you could notice
after reading the magic file:

© 2006 CodeBreakers Magazine Page 4 of 12

EVERYTHING IS BYTE

First of all, there is in fact something that lets your
computer know what file it's dealing with: data
themselves, with particular values and in particular
positions inside the file, can identify the file type and
let you discover many other info (just see all that
">>" stuff).

In most of the cases, the identifying bytes are at the
beginning of the file, but sometimes important
information is NOT necessarily in the header. And
that would not be so interesting if it wasn't real for
ZIP files too...

6 About Zip Files

The most interesting detail about ZIP files is that they
keep information about their packed files in the
LAST bytes of the zipped archive: this means that
you can add whatever you want or make slight
changes at their beginning and many programs, such
as Winzip under Windows or unzip under Linux, will
open them without any problems. Note that FILE
utility, instead, will not recognize them anymore: the
line

0 string PK 03 04 Zip archive data

inside magic means that it just checks for the first
four bytes, which means that if you change them
with, for instance, "ZZ", FILE won't recognize the zip
anymore, while other programs will be able to open it
anyway.

After all, this is not a great limit: FILE also gives you
the chance to use indirect offsets, which could help in
tasks of this kind... and it's always possible to change
the sources, so that you can make it recognize offsets
starting from wherever you wish and not just from the
beginning of the file. This, of course, is left as an
exercise to the reader.

6.1 About Image Formats

As you've seen, ZIP utilities don't mind if you append
anything at the beginning of their files. On the other
side, there are some image formats which don't mind

if you append something at their end: this is because,
inside their header, image width and height are
specified, so all the exceeding bytes are ignored. This
works, for instance, for .gif and .jpg images... and
joined with ZIP's property this means that you can
append a JPG and a ZIP together (the image first, the
archive last) and, under Windows, open the first or
the second one just by changing the file extension!

6.2 Dumping

If you want to study a file, you should have a tool
which lets you open it and dump its contents on the
screen in a raw format. A hex editor is a good tool for
this purpose, better if it lets you change the
visualization mode from hex to ASCII, best if -like
Hiew and Biew- it also lets you disassemble the files
you open. Another great tool is list.com by Vernon
Buerg, which lets you open BIG files of any kind,
dump them in ASCII or hex, search very fast for
strings and so on, all working in a DOS box in less
than 30KB (don't search for the latest, "bloated",
win9x versions: I've recently upgraded to v9.6d but
v9.0h is still ok for my purposes).

I usually copy list.com in c:\windows\command
directory, then run regedit and create the following
register key:

 HKEY_CLASSES_ROOT*shellOpen with Listcommand

with the value:

 "c:windowscommandlist.com %1"

This allows me to open any unknown-type file with
List just by double clicking it, and any other file
clicking with the right mouse button and choosing
"Open with List".

Once you've found a file dumper which suits your
needs, learn to use it and USE it... a lot! After a while
you will notice that many patterns occur in files of
the same kind and you will be able to easily
recognize them. Also, you will learn a lot of
interesting, useful things. For instance many viruses

© 2006 CodeBreakers Magazine Page 5 of 12

EVERYTHING IS BYTE

put their name or some particular bytes at the
beginning of the file they infect, so opening
executables with a dumper will let you not only avoid
being infected by viruses, but also understand which
one is trying to hit you. And, since many Trojan
viruses are around in these days, dumping your
attachments before opening them is often a good idea.

Did you know that CuteFTP saves your password in
clear inside its macros? Well, I know that you can
open CuteFTP macro files with ANY text viewer, but
this example is just to show you that you should try to
open ANY file you find on your hard disk :) So, if
you have just forgotten a password you've saved in
CuteFTP "FTP site manager" you just have to start
recording a macro, connect to the site you wish and
then save the macro... you'll end up with a text file
like this:

 Host 123.123.123.123
 RemoteDir /home/httpd/mywebsite
 LocalDir D:mywebsite
 Retry 20
 Login Normal
 User myusername
 Pass mypassword
 Connect

if you're so unlucky you REALLY have to use
Microsoft Word (in most of the cases you don't
REALLY have to do it, and if you do you're just
stupid, not unlucky) start opening your .doc files: it's
really amazing how much useless stuff is stored
inside them. If you happened to enable the "quick
save my documents" option, you probably have some
of them pasted inside the files of some others, or your
errors together with your corrections. An example?
Here it is!

 Open Microsoft Word (this experiment has
been made with Word97)

 Be sure that "quick saving" is activated (it's
the Save tab inside the Options window).

 Create a new document and write: "Dear
boss, you really stink."

 Now save your document with whichever
name you like most (I've used example.doc).

 Now change the text so that it reads:

 "Dear boss, you're really a great man." (don't
worry, if you don't feel you're able to write
this you can change the text as you wish)

 Save again the document and close Word.
 Open the file with your dumper and think

what could happen if your boss receives it.

Also, the file has grown drastically... but I don't think
I will spend more time on this subject, I'll rather let
you discover all the details alone, leaving you just
one suggestion: when your Microsoft Word crashes
(I'm sure it will do), making you lose all your last
changes, try to open the ~backup files it has left on
your hard disk with a dumper and recover most of the
text with a cut & paste.

7 Zeroes

As you may have learned while looking at the files
which reside on your hard disk, every format has
some values which occur in particular places, or more
frequently than others. The reason why I've called
this section Zeroes is because they're often zeroes...
but not always!

For example, text files may have a CR (or CR+LF)
about every 80 characters: the line size isn't always
the same, but you can suppose you will find some
regularity - and in some cases this may let you
understand that a file contains text even if it's
encrypted (just give a look at a .box Calypso mailbox
file and you will understand what I mean). For this
kind of tasks, a good knowledge of the ASCII table
may be helpful too... but you'll probably read
something about it later.

If you happen to study executables or other binary
files, instead, you will find that zeroes are widely
used: not just as string terminators, but also as
padding at the end of PE sections. If you don't
understand this, just think that if you have long
sequences of identical values they may probably be
zeroes. Open, for instance,
c:\windows\system\systray.exe and see how
many padding zeroes are there: I wonder if any virus
writer has ever thought of infecting it... it has so
much space to use and it's always loaded at start-up.

© 2006 CodeBreakers Magazine Page 6 of 12

EVERYTHING IS BYTE

Well, I'm sorry I cannot find a similar example under
Linux... try to biew /usr/bin/vim and see what
happens, but I'm afraid you won't find a PE file.

8 PLAYING WITH CHAOS

8.1 Some Basics

Now you know that files are just a bunch of bytes
(wow, what a good piece of news!) and the software
just understands them the way it wants. Some
systems use extensions to recognize file types, others
use particular sequences of bytes, but the most
interesting things happen when you try to open a file
with software which is not designed to handle it. Just
one last thing and I'll stop boring you. If you use
applications able to handle files in RAW format
(which, in fact, is a non-format), you can read them
as text files (as you have seen with list), images,
sounds, whatever you want them to be.

8.2 Patching With Psp

Ever cracked a program? Well, don't be shy... it
happens sometimes. Even if you are one of the lamest
ones, and all you've done was running a crack patch, I
hope you've AT LEAST understood what you were
doing: you know, the program is a sequence of bytes
(just to change, I'd say) and by modifying it for even
only one byte you can make it do completely
different things, such as telling you are a registered
user even if you've inserted the wrong registration
code.

Of course, the operation of patching a program can be
done for many other purposes, like correcting errors
or adding new functions to close software which
comes compiled and without sources. Usually, to
accomplish this task you can use Hex Editors like
Hiew and Biew or tools like my old hexpatcher. This
time, we will do that using Paint Shop Pro: anyway,
PsP is only ONE of the programs you can use – you
just need an image editing tool that lets you open
images in RAW format.

In this example, we will try to patch a little program,
Cruehead's CrackMe v1.0, available at
http://3564020356/tutes/crackme.zip. This little
Windows application does exactly nothing: it just
stays there waiting to be cracked... and since it has a
really easy protection, I won't spend much time on it.
Just know that there's a regcode check and then a
jump that either sends you to the "good guy" piece of
code or shows you the "bad guy" message box. For
those who wish to experiment with SoftICE, just bpx
on messageboxa and when the debugger pops up
return from the call you're in: the check and the
jumps are just a few lines above the place where you
are, at address 401243.

Now, we know from SoftICE that at 401243 in
memory there's a jz (0x74) that we want to change
with a jmp (0xEB): where can we find it inside the
file which is saved on your disk? There are different
ways to do it, depending on which tools you have (of
course, we suppose you don't have a hex editor):

If you have a disassembler or any other program
which shows you data about sections, you can read
RVA and Offset and calculate the right offset inside
the file:

Offset in file = (Address) - (Imagebase)
- (RVA) + (Offset of section)

For instance, in this case we have these data about
CODE section:

 Object01: CODE
 RVA: 00001000
 Offset: 00000600
 Size: 00000600
 Flags: 6000020

And the Imagebase is 00400000. So, the right offset
of instruction at 401243 is

 401243-401000+600 = 843 (HEX, of course)

If you have neither a disassembler nor a PE viewer,
you might try with LIST (I did tell you it was
useful!). Just open the executable with it, press
ALT+H to view the data as HEX + dump, then hit
backslash to search within the dump: just enter "c3 74

© 2006 CodeBreakers Magazine Page 7 of 12

EVERYTHING IS BYTE

07" and BANG! You hit it at the first shot! As you
can see, the "74" byte is at 0x843.

If you don't have either a disassembler, a PE viewer,
or LIST... well, you might try to use PSP itself.
WARNING: this is not easy and it might even
become not funny too, if you have to search much
data or a very common sequence of bytes. But in this
case, fortunately, it's not so hard and you'll also have
the chance to find the place where you have to patch
inside the image... so I'll show you that technique in
just a few lines.

If now you're asking yourselves HOW, in practice,
you can use an image editing tool to work on data
instead of images, let me explain...

If you want to open a file, preserving its binary
information, you have to open it as RAW: i don't
know how it's called inside other applications, but all
you have to see is a greyscale image, where every
pixel matches one byte inside the file you've just
opened. Also, since the size of this image is not
specified inside the file (_ALL_ the bytes are pixels),
you will have to choose a size yourself. A good size
to choose is 100 (or 1000, if the file is huge) for
width and, for height, anything which multiplied by
width gives you the size of the file (or something
bigger, we don't mind adding zeroes at the end). In
our example, since the size is 12288 bytes, we'll
choose width=100 and height=130.

If you want to read what value is one byte (that is,
one pixel), just put your "dropper" or "colour picker"
tool above that pixel and click. If, instead, you want
to change one byte, just choose a size 1 brush (or
pencil or whatever, I think everything should be
identical at size 1), the colour you want and click on
the pixel/byte you want to change.

If you want to search for a sequence of bytes... well, I
still don't know if it's possible (probably with GIMP,
but definitely not with PSP). The technique I've
learned is the following:

 Open the file as RAW and increase its colour
depth to 16 million colours

 Use colour replacer to replace one byte (let's
say "74") with a bright colour (let's say a red
or a green: since the original image was
greyscale, anyway, almost every other colour
will seem bright). If you're comfortable with
image editing tools you might also choose a
size higher than 1 for your brush, while if
you're comfortable with exe manipulations
you can choose to replace colours only in
code section, which is quite easy to
individuate at a glance

 Now do the same thing with the byte value
preceding the one you have chosen before
(using another colour, of course). From now
on, you can consider only the sequences of
two coloured pixels in a row: if you have
more than one, repeat this step.

 At the end, remember to close this version of
the file: you don't want to deal with a 16
million colours image, but with your good old
.exe raw file

NOTE: all the numbers we're dealing with now are
hexadecimal, while you'll probably have to deal with
decimal values inside your application, so learn to
convert them quickly or make SoftICE do that for
you with "?" command.

Doing this with crackme.exe will show you the right
place in just two steps: you'll be able to see only two
coloured pixels in the image, of which the rightmost
one is the one you have to change. Its coordinates,
provided you opened the image with 100x123
resolution, are (15, 21). If you already had the offset
of the byte inside the file, you could have found the
right coordinates just by dividing the offset for the
width and keeping the result of the integer division as
y, the remainder as x. In our case:

0x843 = 2115 dec
2115 / 100 = 21 = y
2115 % 100 = 15 = x

Now you have the coordinates, you just have to pick
up the colour you wish (0xEB = 235) and "paint" the
right pixel to patch your program. Save the file as raw
and you'll have a cracked crackme.exe!

© 2006 CodeBreakers Magazine Page 8 of 12

EVERYTHING IS BYTE

9 Executable Images

Gosh, when I first started to write this tutorial I had
just experimented with this topic, but now so much
time passed and I'm afraid I won't remember all the
things I had found! Anyway, I'll try to explain them
by steps and redo them while I'm writing. I hope it
will sound understandable.

The first thing that led me to think about an image
which was a running app at the same time was that
Psp cracking I was telling you about a few lines
above: we have seen that it's possible to view an
executable as an image, but of course this image is
senseless... is it possible to make a "good" image
which is also an executable?

Of course it is, but we have to notice some details
before:

 Windows executables have a fixed format (the
one I called PE some times inside this text: to
have more info about it, just search for a
tutorial, there are plenty of them around the
net) which requires them to have a header full
of data you won't be able to move: this means
that the high part of the image will always be
full of junk, unless you use something
different from PE. This is the reason why I
decided to work with .com files, written in
ASM and modified by hand

 Even if you create a .com file, it will have to
start with some code so at least a few bytes
will have to be present at the beginning of the
image. It's not a big problem, anyway, since
they'll just become small dots in the upper left
corner (we'll see how to make them less
noticeable later)

 The more flexibility we want for the data to
be hidden, the lowest level programming
language we have to use. That is, we might be
able to write a C program and then fine tune it
to work as an image too, but it will be easier
for us if the program is written from scratch in
ASM.

 Needless to say (you should have learned it
from the Psp patching section yet, if you've
experimented with it) there's a matching

between byte values and greyscale colours:
that is, 0x00 will be black while 0xff will
become white; an unconditional jump (0xEB)
will be quite bright, while a conditional one
(0x74,0x75) will be darker; the same way, the
longer are your jumps the brighter their
offsets will become, but remember that if the
jump offset is signed then a near negative
jump will be even brighter than a far positive
one; and so on... Don't start pulling your hair
away from your head, I've just begun with the
funny part,

So, we want to write a program, AND to create an
image with some sense. The method I'm going to tell
you is not formal nor official, it's just the way I
created some examples: if you find a better one tell
me and I'll be glad to publish it here. Now, let's start.

The first thing I did was to create an ASM program
which had a lot of empty space inside it: I thought
that few pixels distributed in a huge space would
have been less noticeable, especially after inserting a
real image between them. So, given a VERY easy
ASM code to print a string on the screen:

 mov ah, 09h
 mov dx, offset id_msg
 int 21h
 ret
 id_msg db "Hello world",13,10,"$"

Let’s change it this way:

 mov ah, 09h
 jmp lbl00
 db 1323 dup 0ffh
lbl00:
 mov dx, offset id_msg
 jmp lbl01
 db 1323 dup 0ffh
lbl01:
 int 21h
 jmp lbl02
 db 1323 dup 0ffh
lbl02:
 ret
 id_msg db "Hello world",13,10,"$"

What did I do? Well, I've just put some empty spaces
between a command and the following one. Why
1323? It's the number of spaces that will give me a

© 2006 CodeBreakers Magazine Page 9 of 12

EVERYTHING IS BYTE

file which is exactly 4000 byte long, and since we'll
have to open it inside an image editor, size matters ;)
Why 0xFFs and not zeroes? "Marty, you are not
thinking quadrimensionally": what we consider
zeroes here are ugly black dots inside our beautiful
image, while FFs are empty white spaces inside the
picture! :)

Now, let's open the file inside Psp: 4000 is 50x80, so
let's open the .com as a raw image with this size,
using a single colour channel (greyscale): in this way,
every byte will be read as a single pixel value. Now
we can choose different approaches to hide our data:

 Draw some random noise around the code
pixels so that they won't be easily detectable:
as an example, see
http://3564020356.org/tutes/step01.gif. Of
course, this is just a quick and dirty trick you
might use just if you run out of fantasy: this
will NOT generate an image, but just a bunch
of pixels.

 try to draw something with sense, but which
will not interfere much with the data:
http://3564020356.org/images/exegif.gif is a
writing I’ve used to hide the Hello World
example you've seen before and, even if not
completely (see the line of pixels at the
bottom of the image, it's the "Hello World"
string), it dissimulates the presence of an
executable file quite well.

 Fine tune: this is the harder option you can
take, but might be the one with the greatest
impact. You should start from a ready-made
image and tune the first jump so that you'll
land in a place where your following code
(and the subsequent jump) will have colours

which are similar to the colours of the image.
Then, modify the second jump so that the
code after it and the third jump will be hidden
well inside the image, and so on. Hard, but
satisfying: I've used it to create a part of
Riddle #4 on my website and a good part of
the code is invisible (while I left some other
around the image, more or less intentionally)

If you want to experiment a bit with this technique, I
suggest you to use the good old "television trick",
which is a bit harder than random noise and a bit
easier than fine tuning. Its main idea is to put all the
"noise content" (that is the code) in a rectangular area
and then use it on a TV screen or something similar
inside the image: of course, this is not a real way of
hiding data and it's not even original (thanx ovid), but
at least you have something with sense and having
the chance to make a TV say something intelligent is
always nice. Even if this is still quite easy, you will
have some work to do before you can hide data this
way: you'll have to choose a picture before you start,
put noise inside an area and then arrange jumps in
your program so that the noise generated by the code
will stay in the chosen area. A funny example (I've
called it "TELEVISION, THE DRUG OF A
NATION") can be found here:

http://3564020356.org/pix/misc/silly.gif

© 2006 CodeBreakers Magazine Page 10 of 12

EVERYTHING IS BYTE

Here's how I did it:

 first, I found an image with an old TV and I
modified it so that the video contained white
noise

 then, I decided a place to put the code which
was easy to remember too: I chose to start
pasting it at (50,30)

 since I had to jump immediately from the
beginning of the code to 50,30 and the image
resolution was 239x349, I knew that the offset
from the beginning of the file where I had to
jump was 249*30+50 = 7520 (0x1d60) and,
since the unconditioned jump itself needed 3
bytes (one for the Opcode, two for the offset),
I knew that the offset for the jump just had to
be 249*30+50-3 = 7517 (0x1d5d)

 the source file for the executable, then, was
the following (yes, it's SOEASY! Create a
harder one if you can.

 jmp lbl00
 db 7517 dup 0ffh
 lbl00:
 mov ah, 09h
 mov dx, offset id_msg
 int 21h
 ret
 id_msg db "Watch me, you silly
 slave!",13,10,"$"

 Once I assembled the .com file, I just had to
open it as a .raw image, with 249*whatever
(try a big one, I put 100) resolution, and paste
the two pieces of code: respectively, the three
pixels at the beginning, the other ones starting
at 50x30. I suppose there should be a filter to
paste the images in the right way as if they
were simple layers, but I chose the secure way

That's all. Nah, I was pulling your leg, there's more:
the image is so big that, when saved as a raw .com
file, it WILL NOT WORK! You have to keep only a
part of the image (for instance, only the screen:
ALWAYS starting from the upper left corner, of
course!) and then save it to have a working program.

Well, we can say we have some added security, but I
think the truth is that there's a bug in everything I've
explained until now ;)

10 Ceci n'est pas win.com

At http://3564020356.org/tutes/malawin_en.htm
(malawin.htm is the Italian version of the page) you
can find a tutorial I wrote in March, 2002. Wow,
that's old! I am pointing you there because I think it
might be a good example of how the "everything is
byte paradigm" can be used in practice: working on
good (?) old Win98SE win.com, I created a file
which is both a working Windows executable and an
image with some sense, then I started to think about
how copyright could work in this case.

How can you do the same? Easy: open your win.com
file (the version I have is 25175 byte long), as a raw
file with height=101 pixels and width=250 pixels and
write what you like inside the padding space. You
can recognize it quite easily: some black (0x00)
stripes where I decided to put the "Ceci n'est pas
win.com" sentence, together with a "+malagritte"
signature (for the most curious ones, the signature
itself is a modification of the original Magritte's one).

This example, in particular, raises some interesting
questions you could think about, if you have spare
time:

 Is this win.com or not? If you run it, it is...
even if it's modified: it should be win.com as
much as your cracked version of your
favourite application is still your favourite
application. But if you save your raw file as a
.gif you're using it as a graphical
representation of win.com, which carries
much more information than the program
itself, 'cause you've added it. And what
happens if you print it?

 Can you get some useful information from the
graphical representation of the file? Sure: first
of all, you can easily see where padding space
is; also, you can find strings at a glance,
because they're just grey stripes inside the
image (inside win.com, you can see some at

© 2006 CodeBreakers Magazine Page 11 of 12

EVERYTHING IS BYTE

the beginning and MANY at the end of the
file)

 Can you do the same with other files? Sure: as
I've written before, PE files have a padding
made up of zeroes (or, sometimes, custom
strings: try to find all the *.exe files which
contain "PADDING" on your C: disk, for
instance) at the end of their sections, so you
can hide all the data you wish there. Anyway,
make sure you've made a backup copy before
you change a file, because some of that space
might be checked or used by the program and
the effects of your experiments are unknown.

11 Acknowledgements

I have to say a big, BIG thank you to all the +friends
at 3564020356.org for the fun and the satisfaction
they give me every day: you never stop amazing me!

A hug goes to all the friends of the groups I've been
(and I'll always be, unless they kick me out ;)) part of:
+HCU, RingZer0, RET (people, this one is new, go
and give a look at their stuff ^__^). Another big hug
goes to all the LOAnians: I haven't put LOA between
groups because it's not a group, it's a forma mentis
and it's the best (physical or not) place I've been in
the last years.

A "bravo" to anyone who had the strength to reach
this point. I promise I'll stop exactly NOW.

© 2006 CodeBreakers Magazine Page 12 of 12

	5.1 The FILE Command
	6.1 About Image Formats
	6.2 Dumping
	8.1 Some Basics
	8.2 Patching With Psp
	10 Ceci n'est pas win.com
	11 Acknowledgements

