
SANS Institute
Information Security Reading Room

Techniques and Tools for
Recovering and Analyzing Data
from Volatile Memory

Kristine Amari

Copyright SANS Institute 2020. Author Retains Full Rights.

This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express
written permission.

http://www.sans.org/info/36909
http://www.sans.org/info/36914

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 1

Techniques and Tools for Recovering and Analyzing Data from

Volatile Memory

GCFA Gold Certification

Author: Kristine Amari, Kristine.amari@disa.mil

Adviser: Carlos Cid

Accepted: 26 March 2009

Abstract

There are many relatively new tools available that have been developed in order to

recover and dissect the information that can be gleaned from volatile memory, but because

this is a relatively new and fast-growing field many forensic analysts do not know or take

advantage of these assets. Volatile memory may contain many pieces of information relevant

to a forensic investigation, such as passwords, cryptographic keys, and other data. Having

the knowledge and tools needed to recover that data is essential, and this capability is

becoming increasingly more relevant as hard drive encryption and other security mechanisms

make traditional hard disk forensics more challenging. This paper will cover the theory behind

volatile memory analysis, including why it is important, what kinds of data can be recovered,

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 2

and the potential pitfalls of this type of analysis, as well as techniques for recovering and

analyzing volatile data and currently available toolkits that have been developed for this

purpose.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 3

1. Introduction..6

2. Defining Memory Forensics ...7

3. The Value of Memory Forensics..9

4. Data Found in Volatile Memory ...11

4.1 Processes ..11

4.2 Open Files and Registry Handles...11

4.3 Network Information ...12

4.4 Passwords and Cryptographic Keys ..13

4.5 Unencrypted Content ...14

4.6 Hidden Data ...14

4.7 Malicious Code...15

5. Current Analysis Techniques...16

5.1 Acquiring Volatile Memory..16

5.2 Where to Find Volatile Memory ..18

5.3 Persistence of Data Stored in Memory...19

5.4 How Volatile Memory Works ..22

5.5 Strings Search..25

5.6 How Memory is Organized...28

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 4

5.7 Enumerating the Running Processes...29

5.8 Recovering Memory-Mapped Files ..31

5.9 File Signature Search...34

5.10 Detecting and Recovering Hidden Data...37

6. Current Tools...40

6.1 Basic tools ..41

6.2 Memdump, KnTTools ...42

6.3 FATKit ..43

6.4 WMFT .. 45

6.5 Procenum...45

6.6 Idetect ..46

6.7 The Volatility Framework..46

6.8 VAD Tools ..49

6.9 Commercially Available Tools ..50

7. Cautions and Considerations...52

8. Conclusion...54

9. References ..55

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 5

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 6

1. Introduction

Computer forensics is an expansive and fast-moving field. New and evolving

technologies such as cellular phones, personal digital assistants (PDAs), as well as new and

ever-changing operating systems and file systems all require in-depth analysis to determine

how best to extract information pertinent to an investigation. In addition, techniques for

performing forensics on both new and existing technologies are constantly in development.

In such a dynamic working environment, forensic analysts must be constantly vigilant

in order to keep abreast of the latest advances in their field. Many techniques are complex

and time-consuming, requiring training and specialized tools. Distinct areas of research and

development have emerged within the overarching theme of forensics, and it is increasingly

common for examiners to choose a specific area of expertise, such as personal electronic

devices or a family of file systems rather than one examiner taking responsibility for all

aspects of the analysis.

This specialization allows the study of forensics to branch out in new directions and

encourages the development of more technology-specific methodologies and techniques. As

technology continues to evolve and become more varied and complex, so must the toolkit

available to a forensic examiner.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 7

One relatively new capability available to examiners is memory forensics. As attackers

learned that they could leverage volatile memory to store data and execute code instead of or

in addition to the hard disk, it became necessary for analysts to take that into consideration

and develop their own methodologies for recovering this important information in their

investigations. This paper is intended to be a snapshot of the current memory forensic tools

and techniques available to forensic analysts. It also aims to provide guidance as to why

memory forensics is valuable, and argues that it is in fact essential to the future of forensic

analysis.

In this paper, we first discuss the concept of memory forensics and why it is valuable.

We then move on to enumerate the types of data that can be extracted from volatile memory

in section 4. Later, in sections 5 and 6 we describe current analysis techniques as well as

tools that are currently available and the features they provide. Additionally, in section 7, we

look at some general guidelines and precautions when performing analyses of volatile

memory, as the process involves a set of risks that traditional forensic analysts do not have to

consider. Finally we conclude in section 8.

2. Defining Memory Forensics

Memory forensics is a young but fast-growing area of research, and a promising one

for the field of computer forensics. Whereas traditional computer forensics involves the study

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 8

of persistent data storage such as hard drives and USB devices, also known as dead-box-

analysis, memory forensics involves the capture and analysis of volatile memory such as

RAM.

Data is considered volatile when it is likely to be lost when a machine is rebooted or

overwritten during the course of the machine’s normal use. Such data, because it is

constantly in flux, is often not as structured in the same way that filesystems are, and can be

more difficult to predict and parse into meaningful data as a result. Often, however, the

artifacts that can be recovered from volatile data are valuable in pushing the investigation

forward on all fronts, and many types of artifacts can only be recovered from memory.

The analysis of any volatile memory captured by an incident responder is currently a

less precise art than the analysis of a hard disk. Hard disks have a strict pre-defined

structure, and analysts know where to look for certain structures and data types on a specific

kind of filesystem (FAT32, for instance). Memory, on the other hand, can be allocated and

de-allocated to different areas depending on what memory is already being used; for all

intents and purposes it is impossible to predict what you will find in volatile memory or where

it will be stored.

It is readily apparent that acquiring and analyzing this type of data is more challenging

and perilous than dead-box analysis. Because of the less structured approach to storage and

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 9

the speed at which volatile memory is modified, analysts have to take more precautions when

capturing the data and parsing through it. Virtually every action that a user performs on a

computer modifies the memory on the machine, which leads to a certain amount of

unpredictability in the resulting captures. The pitfalls of performing memory analysis are

discussed in detail in section 7.

3. The Value of Memory Forensics

Performing memory forensics has the potential to contribute significantly to any

forensic investigation where such data is available for capture and analysis. Memory

forensics is extremely valuable because it overcomes several limitations of traditional forensic

analysis, in addition to addressing problems that new technologies such as encryption can

cause during the course of a dead-box examination. As technologies continue to evolve,

memory forensics will become increasingly critical in order to effectively gather necessary

evidence.

Traditional dead-box analysis is limited in several ways. The investigator cannot

access encrypted data unless he or she can crack the user's password or recover the key

used to encrypt the data. Keys and passwords are very rarely stored on the disk. When the

user types in their passwords, or when data is decrypted, however, the passwords and keys

are necessarily loaded into and stored in memory; analysis of that memory can allow the

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 10

analyst to recover them.

Another limitation is imposed by the inability of the physical disk to reveal information

about processes that were running in memory, which denies the investigator insight into how

applications were being used on the system at the time of the attack. It is also possible for a

suspect to hide data in memory, or for a remote attacker who has compromised a system to

store tools, data, and other artifacts there rather than on the system's drive.

Furthermore, it is becoming increasingly common for attackers to write viruses,

Trojans, and worms that reside only in memory and do not write themselves to the physical

disk drive (Szor, 2005). As a result, traditional forensic analysis of the disks will not reveal the

code or allow analysts to understand how the attack is being executed or how to mitigate it.

As an example, the SQL Slammer worm, the fastest-spreading worm to date, exists only in

the memory of the infected box and does not write its own code or any output it produces to

the physical disk of a computer it infects (Moore, Paxson, Savage, Shannon, Staniford, &

Weaver, 2003).

The techniques referred to above, including data contraception, data hiding, and data

destruction, are often referred to as anti-forensic techniques and are discussed in detail in

section 5. It is important to note that these techniques were designed by attackers to thwart

traditional forensics; hence the value inherent in using memory forensics to supplement a

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 11

dead-box analysis.

4. Data Found in Volatile Memory

There is a wealth of data available in volatile memory. Processes, information about

open files and registry handles, network information, passwords and cryptographic keys,

unencrypted content that is encrypted (and thus unavailable) on disk, hidden data, and worm

and rootkits written to run solely in memory are all potentially stored there. This section will

go into detail about exactly what types of information may be recoverable via memory

forensics.

4.1 Processes

There are several different types of processes that may be found in volatile memory.

All currently running processes are stored there and may be recovered from the data

structures that house them. In addition, hidden processes can be parsed out of memory.

Finally, processes that have been terminated may still be residing in memory because the

machine has not been rebooted since they were terminated and the space they reside in has

not yet been reallocated. These too may be parsed out and analyzed.

4.2 Open Files and Registry Handles

The files that a process has open, as well as any registry handles being accessed by a

process, are also stored in memory. Information about the files that a process is using can be

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 12

extremely valuable. If the process is a piece of malware, the open files might lead an

investigator to discover where the malware is stored on the disk, where it is writing its output,

or what previously clean files the malware may have modified to serve its own purposes.

Following these leads can help to turn up other critical information such as what type of output

the malware is producing and how it is storing it, or what Windows API calls the malware is

using (which can give a better idea of how the malware is working).

In the Unix environment, for example, files that are mapped to memory are generally

described by an inode structure, which stores information about the memory-mapped file such

as modification, access, and change times of the file, the name of the file, and information on

the directory the file was executed from if the file happens to be an executable (Burdach,

2005). There is also a field that points to an address_space structure, which usually maps the

pages in memory that make up the file to the physical disk blocks where the data resides. As

any forensic analyst can see, there is a wealth of information to be gleaned from this data

structure alone that could help to track down additional relevant information, or that could be

used to validate facts that have already been established via analysis of the physical disks

(for example, MAC times).

4.3 Network Information

Information about network connections, including listening ports, currently established

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 13

connections, and the local and remote information associated with such connections can be

recovered from memory. This is useful because tools that are run on the machine itself, such

as netstat, can be trojanized by a malicious intruder or user to provide false information back

to the analyst. When pulling the information directly from a memory dump using the data

structures themselves, it is much harder for an attacker to hide their listening backdoor, or the

connection to their home server from which they are transferring malware and other harmful

or illegal files. Network connection information is one of the most critical pieces of information

that can be gleaned from a computer that is being investigated, and it is more reliable when it

comes from static analysis of a memory dump.

4.4 Passwords and Cryptographic Keys

One of the most critical advantages of memory forensics is the potential for recovery of

user passwords and cryptographic keys that can be used to decrypt files of interest and

access user accounts. Passwords and cryptographic keys are as a general rule never stored

on hard disks without some type of protection. When they are used, however, they must be

stored in volatile memory and once this occurs they will remain in memory until they are

overwritten by other data or the machine is rebooted. When forensic examiners capture

volatile memory they can parse through it looking for passwords and keys that may help

recover critical data that is password protected or encrypted. Password recovery can also

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 14

allow examiners to access online accounts owned by a suspect such as email and data

storage.

4.5 Unencrypted Content

While recovering keys and passwords can lead investigators to encrypted content, it

may be possible to recover data from encrypted files without having the key. When the

suspect accesses an encrypted file, the content is unencrypted and loaded into memory. This

unencrypted content may remain in memory even after the suspect has closed the file, as

long as it is not overwritten by something else. Parsing through volatile memory may reveal

fragments of files, or even whole files that would otherwise be unrecoverable if the key or

password used to encrypt the data could not be discovered.

4.6 Hidden Data

It is feasible for malicious entities or suspects with data they want to protect to store

their data in volatile memory instead of on the hard disk. Because investigators traditionally

do not inspect volatile memory, it is a safer place to hide information than on a hard disk. It

also makes it easy to destroy incriminating or sensitive information - all the user has to do is

pull the plug, and a remote attacker can usually manage to cause a machine to reboot if

desired. In addition to hiding files in memory, attackers can also run malicious code from

memory instead of storing it on the disk, making it difficult for reverse engineers to obtain

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 15

copies of programs and figure out how they are working and how to mitigate the threats they

pose (Eilam, 2005). This is discussed further in the following section on malicious code.

Checking volatile memory for hidden files and code can lead to discovery of critical

information.

4.7 Malicious Code

Recently it has become increasingly more popular for attackers to run exploits from

memory instead of storing malicious code on the hard disk itself. This is primarily to avoid

detection, since current anti-virus software and other malware detection tools are not currently

as good at analyzing volatile memory for malicious code as they are at analyzing the hard

disk, and some do not have this capability at all. Storing malware in memory also benefits

attackers by making it harder for analysts to recover and reverse-engineer their code. An

example of a relatively new and revolutionary rootkit that runs in memory and leaves no trace

on the affected user's system is Shadow Walker (Sparks & Butler, 2005). Currently the

known examples of this type of malware are proof-of-concept, but it seems to be a safe bet

that in the future attackers will increasingly trend toward using this type of tool. Furthermore,

the lack of real-world examples may be due to the difficulty inherent in detecting and

recovering such tools with today’s technologies and forensic methodologies.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 16

5. Current Analysis Techniques

In order to acquire volatile memory and analyze it, first an analyst must have a

technique for acquiring memory. They must also know where to locate it and how to obtain a

copy of it. These details are described in sections 5.1 and 5.2. Section 5.3 describes the

persistence of data in volatile memory, namely how long an analyst can expect data to remain

in memory once it has been loaded. The remaining sections describe the techniques used to

analyze memory once it has been successfully acquired.

5.1 Acquiring Volatile Memory

There are two methods of acquiring volatile memory: hardware-based acquisition, and

software-based acquisition. Both methods, including their pros and cons, will be described in

this section. In general, from a forensics perspective, it is better to use hardware-based

acquisition because it is more reliable and difficult for an attacker to corrupt, but currently

software-based acquisition is the far more popular method due to its cost-effectiveness and

ease of availability.

Hardware-based acquisition of memory involves suspending the computer’s processor

and using direct memory access (DMA) to obtain a copy of memory. It is considered to be

more reliable because even if the operating system and software on the system have been

compromised or corrupted by an attacker, we will still get an accurate image of the memory

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 17

because we do not rely on those components of the system. The downside to this method is

cost – special hardware must be purchased in order to perform the acquisition of memory in

this way. One piece of specialized hardware designed specifically for this purpose is the

Tribble card (Carrier & Grand, 2004), which is a PCI card that must be installed in a system

before a compromise takes place in order to allow the investigator to capture the memory in a

way that is more accurate and reliable than software-based approaches.

Software-based acquisition is most often done (and should always be done) using a

trusted toolkit that the analyst brings to the site, but it is also possible to collect volatile

memory using tools built in to the operating system (such as memdump or dd on Unix

systems). Whether the tools are trusted or already on the system, it is easy for an attacker to

circumvent this technique if they have compromised the operating system of the computer

that is being analyzed since the attacker can hide relevant data by modifying system calls and

internal system structures. Another downside of software-based acquisition is that executing

it in order to capture the memory will alter the contents of the memory, potentially overwriting

data that is relevant to the investigation. On the other hand, the tools necessary to perform

software-based acquisition are free and readily available.

The next section, section 5.2, describes where volatile memory is found on different

types of systems and includes some details on how the acquisition process works.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 18

5.2 Where to Find Volatile Memory

Volatile memory is accessed via different mechanisms depending on the operating

system being used, and the hardware in the machine itself.

In Windows, there are two common device objects that can be accessed to obtain

physical memory: \\.\PhysicalMemory and \\.\DebugMemory. A raw image is usually taken of

each of these devices; once that raw image is obtained, the analyst can convert it to

Microsoft’s crashdump format and look at it using a debugging tool. The analyst can also use

many other tools (including some of those described in section 6 of this paper) to parse and

examine the contents of the data dump.

Another useful way of acquiring physical memory in Windows is to use a registry key to

cause a BugCheck trap when a specific key sequence is executed, which causes a memory

dump to occur (Microsoft Corporation, 2005). The resulting dump will be in a different, more

complex format than a byte-by-byte copy of memory, but it has the advantage of being

compatible with Microsoft’s debuggers, which can help the analyst better understand the

kernel data structures. There are not currently many tools that leverage this format to perform

analyses, but it is useful to know about in any case.

In Unix, the physical memory devices are usually /dev/mem/ and /proc/kcore. Not all

filesystems use /proc/kcore so the analyst must know the filesystem in order to understand

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 19

whether this device exists and should be captured for analysis. The common Unix debugger

gdb can be used to analyze the resulting raw memory images, and so can many other freely

available and commercial tools (once again, see section 6 for more examples).

Now that we have discussed how to find and acquire memory, we move on to a brief

discussion of how long data tends to stay in memory before being overwritten. After that, the

next sections discuss techniques for extracting any data that happens to be in the capture

obtained by the analyst.

5.3 Persistence of Data Stored in Memory

In this section we try to gain some insight into the lifespan of data that is stored in

volatile memory – for example, once a program is loaded into memory when it is run, how

long can we expect it to remain in memory? We are also interested to see whether other data

follows similar patterns, or if other types of information that are commonly stored in memory

have entirely different lifecycles.

Intuitively, we can conclude that as long as a program continues to run it will continue

to reside in memory. But what happens after the program exits and the memory it inhabited is

deallocated? This area of study is not well mapped out because of how unpredictable

memory is due to the multitude of factors that can influence when and where memory is

allocated, deallocated or overwritten. One of the few papers that features a study of this

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 20

information is Data Lifetime is a Sytems Problem (Garfinkel, Pfaff, Chow, & Rosenblum,

2004). Figure 1 shows a graph from their research on memory persistence on the Solaris

operating system.

Figure 1: A graph of the number of changes in memory over time on a Solaris 8 machine set up as a

DNS server with 768MB of RAM (Garfinkel, Pfaff, Chow, & Rosenblum, 2004).

This graph shows the number of days that the machine has been running on the x-

axis, and the number of pages that change on the y-axis. In this study, 86% of memory did

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 21

not change.

Furthermore, Garfinkel et. al. (Garfinkel, Pfaff, Chow, & Rosenblum, 2004) showed that

metadata about processes and other objects can survive in physical memory for more than 14

days while the system is in use. Their study showed that even in the most extreme case they

saw during their research, there were still 23 KB of tracked data on the system after 14 days,

and on that same system, after an additional 14 days, there were still 7 KB of tracked data.

This may not seem like much, but 7 KB is still enough to contain passwords, cryptographic

keys, parts of incriminating files, and other fragments of data that an analyst might find useful.

Even more interesting was the work that was done to study the effect of rebooting a

machine on that machine’s physical memory. Garfinkel et. al. found that contrary to popular

belief, a soft reboot (one that does not turn the power off completely) will leave most of the

data in RAM intact. Even more surprisingly, on some hardware a hard reboot (one where the

power is completely turned off) did not clear the memory completely either – specifically, they

found that on some hardware data persisted in volatile memory after up to 30 seconds without

power.

This is encouraging news for forensic analysts, but it is important to remember that

there are a multitude of factors that contribute to data persistence in volatile memory. The

type of operating system is a major factor, as is how much memory is available to swap data

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 22

in and out of memory. The less data is available, the more often the operating system will

have to overwrite it. The less efficient the operating system is in allocating the available

chunks of memory, the more sporadic the allocation will be across memory as a whole. In

addition, the level of activity on the machine itself plays a huge role. The more work the

machine performs the more it will be loading data into memory and swapping it back out.

Finally, as mentioned earlier in this section, certain types of data may be more likely to be

swapped out or overwritten if the system needs more space in memory for new processes

that it needs to run, or other data it needs to store.

5.4 How Volatile Memory Works

In order to understand some of the information in the following sections, it will be

necessary to have at least a basic understanding of how volatile memory works. This section

will attempt to outline the central concepts necessary to understand how memory generally

works on both Windows and Linux. For a deeper understanding of this material, two sources

were particularly helpful in writing this paper: Windows Internals for the Windows operating

systems (Russinovich & Solomon, 2005), and Understanding the Linux Kernel for Linux

operating systems (Bovet & Cesati, 2006).

First, on both Linux and Windows, anything that the kernel, or central operating

system, uses and needs in order to run will be represented as an object. For the purposes of

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 23

this paper, an object can be understood as consisting of data and methods of manipulating

that data. As an example, a process running in memory would be an object, and so would a

file.

On Windows, every object used by the kernel has an OBJECT_HEADER, which is a

structure that has information about the object stored inside it. When objects are stored in

memory on Windows, there are two ways that the kernel can choose to store them. The

kernel has two sets of memory that are structured like heaps – these heap structures are

usually called pools. There is a paged pool, which is where most data will be stored, and a

non-paged pool, where only important objects that the kernel needs to access frequently are

stored. Any data in the paged pool can be placed into a file on the hard disk if the machine is

running low on actual physical memory (Carrier, 2005). Process and thread objects, because

they are so important and accessed so often, are stored in the non-paged pool, which means

that all processes that are running at the time physical memory is captured will be available to

the analyst (Schuster, 2006).

Processes are stored in Windows in a Virtual Address Descriptor (VAD) tree. This

tree describes memory ranges used by currently-running processes, and allows a process’s

virtual address space to be reconstructed. This is useful for many reasons – most information

associated with a process can be found by walking the VAD tree. In particular, as we will see

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 24

in section 5.8, it is possible to recover all of the memory-mapped files associated with specific

processes using the VAD tree. A visual representation of a VAD tree is shown in the section

on VADtools, section 6.8 (van Baar, Alink, & van Ballegooij, 2008).

In Linux, a computer’s volatile memory is seen by the operating system as one object,

and it is stored in a single data structure called pg_data_t. This data structure stores

information on the size of memory, an address table with page descriptors for memory, and

much other additional information. Most data that the CPU uses is stored in physical memory

as a page frame, which is 4 KB in size by default. This means that if a file that is 12 KB in

size is loaded into memory in its entirety, it would take up three page frames. If a file is 13 KB

in size, it would take up four page frames, and the final page frame would have an extra 3 KB

that would be unused. When large files are loaded into memory, large pieces of them are

often paged to disk to conserve space in the volatile memory. Before a page can be used, it

needs to be paged into memory; to keep track of the pages and whether they are paged in or

paged out, kernels use page descriptors, which stores information about the state of pages.

One of the most important structures in the Linux kernel that deals with volatile

memory is the mem_map_array. This array holds all of the page descriptors. In Linux, there

are usually three memory zones, which are the result of the operating system partitioning the

memory up in order to allow the kernel to access all of it (due to hardware constraints that

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 25

make this impossible if all available memory is treated as one zone). Each zone has its own

mem_map_array structure, and this structure can be used to find objects within that zone

such as processes and files that have been mapped into memory.

This information about the detailed layout of Windows and Linux memory and how

each operating system handles objects within memory will be useful in understanding

sections 5.7 and 5.8, which discuss recovering processes and memory-mapped files from

volatile memory.

5.5 Strings Search

When an analyst acquires an image of the volatile memory from a machine that is

being investigated, one of the first things he or she will want to do us run a search across the

image for anything recognizable. This can be done with a simple command-line tool called

strings that is native to most Unix distributions and has been ported to Windows as well.

There are also GUI tools for Windows that will perform the same functions.

The command line version of strings can be run using a few options that will find both

Unicode strings as well as ASCII strings, and the analyst can specify how long a string of

characters should be before the program reports it as interesting (this is useful because a

two-letter string is likely to occur by chance quite frequently and looking through these strings

is very unlikely to benefit the analyst. Figure 2, below, shows an example screen capture

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 26

from my own system after running the command ‘./memdump | strings > strings.txt’. This

command dumps physical memory and then filters it through the strings command to produce

all of the strings in the dump of memory, then writes that data into a file called strings.txt.

[Note: in this example I wrote the output to my system, but in a real incident response effort

the output of memdump should instead be piped over the network. An example command

using netcat would be ‘./memdump | nc host port’ where host is the IP address of a machine

that is running a netcat listener configured to run on the port specified by ‘port’.]

Figure 2: A fragment of a capture of physical memory, filtered through the strings command.

There is also a similar tool, XORSearch (Stevens, 2007), that is quick to run and useful

if the analyst has a specific list of keywords that he or she is looking for. XORSearch takes a

keyword as input and will perform a search for it within a memory image, and is able to find it

even if the keyword has been obfuscated using the “exclusive or,” known in shorthand as

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 27

XOR, function, or the “rotate left,” or ROL function. If a keyword is found, XORSearch will

print out the value that was used as the “key,” or the value that was XORed with the keyword

in order to obfuscated it. If the keyword has been encoded more than once using different

keys, the program will report both of the keys.

Once an obfuscated keyword is found and the analyst knows the key that was used to

hide it, the analyst can use XORSearch to perform a search across the image for any other

strings that were encoded using the same key. This can lead to recovery of significantly more

obfuscated data that may aid in the investigation. In some cases, several different keys will

be used by the attacker; once some data has been recovered using this method, it is a good

idea to perform additional searches to make sure that all the available data is recovered.

Unfortunately, advanced attackers will obfuscate their data, making the strings function

unlikely to turn up useful information. Advanced adversaries would also be very unlikely to

use something as elementary as an XOR or ROL function to hide the important data they do

not want analysts to recover; more likely they would use more advanced encryption

techniques. Still, there are some attackers who do use these techniques, and both are quick

and easy to perform. Even if nothing useful is found, the analyst will at least have confirmed

that if there is truly valuable information on the machine in question, the suspect has

attempted to hide it and he or she is likely to be using more advanced techniques than

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 28

substitution.

5.6 How Memory is Organized

The structure of volatile memory is important to understand if an analyst hopes to

extract anything meaningful from a capture of a machines memory. In most Linux systems, a

map of memory (often located in the /boot directory and named Symbol.map or System.map)

can be extremely useful in figuring out where the important locations are. Most important

symbols (such as structures and functions) in the Linux kernel are shown there, along with the

addresses where they reside. As an example, a snippet of the System.map file from my

Redhat machine is shown in Figure 3.

Figure 3: Capture from the System.map file on a Redhat 3.2.2-5 machine.

The capture shows the address of a particular symbol, for example dev_get_info, which is

a function, and the address where it resides in memory, c01f6330. This information could be

used in combination with the definition of the dev_get_info function to find all the information

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 29

stored there and extract it from a memory capture.

On Windows, there is not an equivalent way of finding objects in memory – the process is

far more complex. The analyst must know what he or she is looking for, and have detailed

knowledge of Windows internals for the version of Windows that is being analyzed and how

memory is organized on that system. In the following section, 5.7, the procedure for locating

the list of processes is outlined.

5.7 Enumerating the Running Processes

One of the first things an analyst will want to do with a capture of volatile memory is

parse through it looking for the processes that were running when the capture was taken.

The structural representation of a process is actually similar between most common operating

systems, and the general methodology for recovering the list of running processes from

memory is also essentially the same at a high level. This section discusses both Linux- and

Windows-specific details in order to provide an overview of the techniques used on the more

common operating systems.

On most Linux flavors, a process descriptor is used to store information about the

current state of every running process, and serves as a representation of that process. This

structure is called a task_struct, and is used to represent all types of processes from those

that are invoked by a user to kernel threads. The list of currently running processes is a

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 30

doubly-linked list that strings together all of the existing process descriptors (Russinovich &

Solomon, 2005).

On Windows, process structures look somewhat similar to those seen on Linux

operating systems – there is a basic structure that holds all of the process-specific

information, and a doubly-linked list of these structures is used to keep track of all the

currently-running processes in memory. Finding the running processes is not quite as

straightforward in Windows as it is on Linux, unfortunately, because analysts don’t have a

map of memory to start their search for the linked list of processes from. Instead, an analyst

must usually find a starting point by looking at global kernel variables that point to the start of

the list of processes (Schuster, 2006).

Covering every detail of the process structure is beyond the scope of this paper, but

there are several excellent references available for analysts interested in all of the low-level

details, including (Burdach, 2005) for Linux processes, and (Schuster, 2006) for Windows

processes. Section 6 describes some of the currently available tools that automate the

procedure of carving out interesting process-related data, and help the analyst by parsing

through memory using the correct parameters and outputting a list of the running processes

based on what is found in the image.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 31

5.8 Recovering Memory-Mapped Files

In Windows, the data structures that store file mappings are allocated by the kernel

from a memory pool (a dynamic storage area in memory that is allocated by the kernel).

There are several different types of structures that are used to describe a file object. Often,

these structures are found by looking at a process data structure and finding the files that are

mapped in association with that process; a representation of what this looks like is shown in

Figure 4 (van Baar, Alink, & van Ballegooij, 2008).

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 32

Figure 4: An example of a process structure, and how the links it contains can be followed to find the file

objects it has mapped into memory (van Baar, Alink, & van Ballegooij, 2008).

 The best place to start is the root of the VAD tree, which is a set of structures that

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 33

describes a processes’ memory ranges. One of the structures in the VAD tree is called an

object table, which lists the private objects that are in use by a process – these can be files,

registry keys, and events. The memory-mapped files associated with each process can be

recovered by walking the VAD tree and pulling out the objects of interest – in this case files,

but potentially other objects as well.

 As with processes that have been terminated, files that have been closed often remain

in memory, but are no longer linked through the lists maintained by the operating system and

must be found using alternative methods. The process of recovering such files is similar to

reconstructing files on a hard disk that have been deleted, though the fact that memory is

usually far more fragmented than a hard disk makes the process more involved. Often,

looking at the page table will allow files to be reconstructed even if they are no longer active in

memory. There is also an area of memory called the “Control Area” that maintains links

between file names and the file data stored in the pages; if this area is still present the file

name can often be recovered as well (van Baar, Alink, & van Ballegooij, 2008).

In Linux, memory-mapped files are described by inode structures, which are the same

structure used to describe files stored on the hard disk. Using this object, it is possible to

obtain information about the directory where the file was executed from, discover the MAC

times on the file, and do much more. There are many resources that describe the detailed

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 34

structure of inodes and enumerate all of the information that can be gleaned from them. To

find memory-mapped files, an analyst can first enumerate the processes (as described in the

previous section), and for each process look at the file structures associated with that

process. All of the memory-mapped files associated with a process can be found in this

manner.

A useful tool for recovering memory-mapped files from a memory dump is VADtools

(Dolan-Gavitt, 2007), described in more detail in section 6.8. Other tools can also perform

this function; see section 6 for more detailed discussions of forensic tools that can be used to

analyze volatile memory. For in-depth coverage of this topic, an analyst may start with the

paper Forensic Memory Analysis: Files Mapped in Memory by van Baar et. al. (van Baar,

Alink, & van Ballegooij, 2008) and use Windows Internals (Russinovich & Solomon, 2005) or

Understanding the Linux Kernel (Bovet & Cesati, 2006) for more information on the data

structures used for the recovery process.

5.9 File Signature Search

In section.5.8, a complex but fairly reliable technique for recovering memory mapped

files from a dump of volatile memory was discussed. There is another older and less reliable

technique for recovering files from both hard disks and memory that is commonly used in

tools like Encase (see section 6.9). This alternate technique is often referred to as “file

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 35

carving.”

Different types of files (for example word documents or zip-compressed files) have

different signatures. A signature, in this case, refers to specific patterns of values that are

unique to the particular type of file in question. File carving can be done linearly, which

means that contiguous files can be recovered, but fragmented files cannot. There are also

more complex file carving algorithms that are able to recover fragmented files by looking more

deeply inside the data structures that describe a them.

File carving is very useful when analyzing a disk because most operating systems try

not to fragment files which makes them easy to recover using straightforward linear

techniques. Unfortunately, it is often very difficult to use file carving to recover data from a

memory dump, since files are far less likely to be contiguous in memory than they are on disk.

Even if a smarter algorithm that can handle fragmentation is used, it is common for only

pieces of files to be loaded into memory, which can throw off the tool and prevent it from

finding the correct parts of the file and recovering them.

Figure 5 shows the average number of fragments per file versus the number of blocks

in the file in a memory dump. This graph, derived in research by R.B. van Baar, W. Alink, and

A.R. van Ballegooij (van Baar, Alink, & van Ballegooij, 2008), demonstrates visually that it is

nearly impossible to construct files from memory using a linear method, and even one that

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 36

can handle fragmented files will fail because often the page has not yet been loaded into

memory.

Figure 5: A craph of the number of blocks in a file versus the average number of fragments per file in a

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 37

memory dump. The dotted line indicates a fully fragmented file (van Baar, Alink, & van Ballegooij, 2008).

While file carving is a good technique and a very useful one to have in the toolkit of

every forensic analyst, it is not optimal and for the best results, the methods described in the

previous section should be used when possible. There are many tools available that can

perform file carving, such as PTFinder (Schuster, 2007).

5.10 Detecting and Recovering Hidden Data

In sections 5.7 and 5.8, we talked about recovering processes, threads, and memory-

mapped files by working from the lists that the operating system maintains of these objects.

The procedures discussed in those sections are useful and important to understand, but

analysts must also understand that these techniques will not find all processes or threads, for

example. This is because once a process is terminated, or if the operating system is

instructed to hide a process, the data structure that defines the process will no longer be a

member of the linked-list data structure that the operating system maintains to keep track of

what is currently running.

It is good to establish a way of recovering these types of objects because often they

are also related to the investigation – an attacker or a suspect may have closed files or

terminated processes prior to the incident responder arriving on the scene, but there is a good

chance that data will still be in memory. Even more concerning, an attacker may use direct

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 38

kernel object manipulation (DKOM) to remove a suspect process or other type of object from

the lists or tables that the kernel uses to keep track of these resources. Doing so will

effectively hide the target object from the Windows API, as well as any other technique that

finds objects by walking down linked lists or enumerating tables. This section describes some

methods of recovering such data using techniques that don’t rely on the data structures

maintained by the operating system.

 The basic premise for searching for objects in memory that are not accessible through

currently active lists of objects used by the kernel is quite simple. All types of objects, such as

processes or files, have patterns to them – for example the “header” of every process object

will contain some constants that will be the same for every process in memory. In order to

find processes that aren’t in the doubly-linked list used to reference processes that are

currently running, the analyst needs to go through the entire image of memory and search for

these constant values and use that as a guide to point out process objects that would

otherwise be missed.

This is, of course, a very tedious process to go through by hand. Luckily, there are

many tools that have been written to automate the search for common objects like processes

and files. While it may be necessary for a motivated analyst to write a custom script to search

for something out of out the ordinary that no one has created an open-source or commercial

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 39

program to find, in general, especially for common operating systems like Linux and

Windows, it is possible to find programs that will parse out the items that are of interest.

We will now detail some example characteristics that are used by the available

automated tools to find hidden process objects. Processes are represented in Windows by

an EPROCESS structure, which contains other values and structures that describe important

information necessary to the running process. The pointer DirectoryTableBase points to the

beginning of the relevant structures, and can be used to traverse the information in order to

find the relevant pieces to check against the general “signature” of a process that has been

mapped out to help reveal hidden processes. One of the first checks is the value of

PageDirectoryTable. This should not be equal to zero, and if taken modulo 4096 a value of

zero should be the result. Additionally, every process requires at least one thread; threads

are stored in a structure that is basically another doubly-linked list. Two pointers (called

ThreadListHead.Flink and ThreadListHead.Blink) are both checked to make sure they point to

an address greater than 0x7fffffff. This means that both the pointers must point into kernel

space (the top of the memory address space) where the structure is stored. There are other

important checks that must be done that, if found to match, increase the probability of the

object in memory actually being a hidden process. In this way, by following these rules to

parse memory, it is possible to find hidden processes in memory (Schuster, 2006).

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 40

6. Current Tools

In this section some of the current tools available to forensic analysts interested in

performing memory forensics are described and analyzed. This analysis focuses primarily on

freely available tools that any analyst may obtain and use. There are also commercial tools

available, briefly addressed in section 6.9. This is just a subset of the currently available tools

and should not be considered an exhaustive list. In addition, addressing the full scope of the

capabilities of each tool is beyond the scope of this paper.

We also note here that when trying out new tools, or trying to determine the accuracy

of a tool, it is vital to test against a trusted baseline. As an example, if an analyst is trying out

a tool that parses hidden processes out of memory and there is little actual field information

available on the tool, he or she should test the tool on known images of memory and make

sure it finds everything it is expected to find. Another way to test new tools is to use a similar

tool that has been proven to work correctly as a basis for comparison so that the analyst is

able to tell if the tool is missing critical information or providing back false positives. This

footwork is essential, because if a tool cannot be proven to work correctly in every situation,

evidence and analysis performed with that tool will not hold up in court and may cause an

investigation to fail to produce the correct verdict.

It is important to note here that many of the tools discussed in this section have very

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 41

little information about them documented and available. The following sections attempt to

compile the information that is available, and in some cases test the tool to determine

additional functionality and ease of use.

6.1 Basic tools

There are some general-purpose tools that can be useful in analyzing virtual memory.

An example is the strings tool that was covered in section 5.5. Other examples include

netstat, which lists a variety of information about active network connections, listening ports,

and other network state information, lsof, which lists the files that are currently open on the

machine in question, ps, which lists currently running processes and related information, and

ifconfig, which lists network interface configuration details.

Other tools that are not commonly found on systems but may be installed by a

system administrator or brought to the scene by an incident responder include the

Sysinternals suite maintained by Microsoft, the Foundstone tools, and the resource kits for

Windows. These tools can offer the means to pull specific information about processes, open

files, etc., from memory, depending on what the analyst is looking for. None of these tools

has been specifically designed with forensics in mind, but they can still offer some valuable

capabilities.

Both the native system administration tools and the supplementary suites of tools

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 42

offered by various groups are useful and often utilized by system administrators to check on

the state of the system. They are also used by some incident responders to collect

information from volatile memory for the analyst to use in the investigation. There are,

however, a few problems with using these tools for a forensic investigation.

An analyst should never use the tools on the system itself, because if an attacker has

compromised the system the executables could have been modified to return false

information or hide anything related to the attacker’s activity. Most analysts bring a copy of

their own tools on CD or USB thumb drive in order to mitigate this risk. Even when this

approach is taken however, it is important to note that running the tools could overwrite

information related to the investigation. This risk is difficult to avoid unless the incident

responder has a hardware-based acquisition device, as discussed in section 5.1.

6.2 Memdump, KnTTools

Memdump (Farmer & Venema, 1999) is a free tool that runs on many different

systems, including Windows, Linux, and Solaris. It is easy to download, compile, and use,

and is very straightforward in its functionality; it simply creates a bit-by-bit copy of the volatile

memory on a system. Ideally it should be written off of the machine being examined; one way

to do this is to use netcat as follows: ‘memdump | nc host port’ where host is the IP address

of an analysis machine running a netcat listener on the port specified as the last argument.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 43

KnTTools (GMG Systems, Inc., 2007) is a memory acquisition and analysis tool that

was created for use with Windows systems. The acquisition component, KnTDD can capture

the physical memory and store it to a removable drive or send it over the network for archival

on a separate machine. Captures can be compressed to several different formats using the

tool. It also has the ability to convert a binary capture into the Microsoft format for crash

dumps, which could be useful for analysts who prefer the Microsoft crash dump format. The

analysis component of the KnTTools suite is called KnTList and will extract evidence from the

captured memory by reconstructing the relevant Windows operating system data structures.

It can output report information in XML format to make analysis of the resulting data easier.

6.3 FATKit

FATKit, developed by Petroni, Walters, Fraser, and Arbaugh (Petroni, Walters, Fraser,

& Arbaugh, 2006), is a popular memory forensics tool that automates the process of

extracting interesting data from volatile memory. Once the data has been extracted, FATKit

also has the ability to visualize the objects it finds to help the analyst understand the data that

the tool was able to find. The tool is able to analyze structures that are specific to both Linux

and Windows kernels. Figure 6 shows a graphical overview of the different modules that

compose FATKit (Volatile Systems, 2008). Because the tool is modular, it is easily extended

by an analyst who wants additional support of different operating systems or file systems; it is

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 44

also scriptable to allow analysts to develop their own custom extraction techniques.

Figure 6: A graphical representation of the FATKit software architecture (Volatile Systems, 2008).

On a lower level, FATKit uses several different techniques to provide useful output to

the analyst. It is able to reconstruct virtual address spaces used by processes, and translate

between virtual and physical addresses to allow for an accurate picture of where data actually

resided in memory when the machine was running.

Another useful feature of FATKit is its ability to detect malicious code that is residing in

volatile memory.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 45

6.4 WMFT

The Windows Memory Forensic Toolkit (WMFT) (Burdach, 2006) supports the analysis

of memory images from machines running Windows 2000, Windows 2003, and Windows XP.

There is also a Linux version available, but its functionality is currently somewhat limited in

comparison with the Windows version.

In order to use the WMFT, the analyst must first locate symbols that point to important

objects and structures in the memory. Locating the symbols is the hard part, and is outlined

in the freely available paper “Introduction to Windows Memory Forensics” by Mariusz Burdach

(Burdach, 2005). Once the symbols have been located, the analyst can plug the values

(corresponding to the locations in memory) into WMFT and parse through the data structures

to recover processes and other objects stored in memory.

Because WMFT uses the structures themselves to traverse memory and pull out the

relevant information, it is vulnerable to advanced attacks where an attacker hides processes

and other objects by leaving them out of the data structures such as linked lists which are

used by the kernel to keep track of such data.

6.5 Procenum

Enumerating user-mode processes is one of the basic capabilities necessary to

conduct any forensic analysis of volatile memory. Procenum (Burdach, 2006) is a utility that

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 46

will perform this action by looking at all of the page descriptors that are allocated by the

operating system.

The technique used by procenum is very generic, which makes it broadly effective

against processes that an attacker has hidden by using code patching, by modifying function

pointers, or by using direct kernel object manipulation. These techniques for hiding

processes are described in more detail in section 4.6.

6.6 Idetect

Idetect (Burdach, 2006) is a linux-only tool that looks at an image of memory and

attempts to extract detailed information about active processes. It also may allow an

investigator to find out the contents of a file if that file was mapped into memory in the past.

Any structure that relates to the process that the investigator is interested in can be inspected

using idetect.

This tool can be used against live systems as well as images of memory created

during an incident response effort, which, while not ideal for most forensic efforts, provides

some flexibility in the event that some circumstance prevents taking the system in question

offline.

6.7 The Volatility Framework

Volatility (Volatile Systems, 2008) is a collection of tools designed to be used as part

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 47

of incident response and forensic analysis efforts where analyzing volatile memory is

necessary or desired. It is free, open source, and written in the Python scripting language.

It provides a platform to analyze and extract objects from memory dumps, and supports

several operating systems including Linux, OSX 10.5, and Windows.

The Volatility framework supports a wide variety of commands, including commands

that list open network connections, print a list of open DLL files, print out the memory map

associated with the memory dump being analyzed, print a list of the open files associated with

a process, and much more. One of its exciting features (particularly for malware analysts) is

its ability to reconstruct and write out an executable sample from its associated process.

The Volatility framework is very easy to install and run; simply unpack it onto a system

that has Python installed on it (version 2.5 or later) and run the command ‘python volatility’.

The following image (Figure 7) is a screenshot of volatility running.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 48

Figure 7: A screen capture of running the volatility framework on a Windows XP memory capture.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 49

All that is needed to run volatility is a memory dump image, which can be obtained

using many different tools, both open source and commercial. In the above screenshot, the

memory dump was obtained using memdump (described in section 6.2) (Volatile Systems,

2008).

6.8 VAD Tools

 As discussed in section 5.8, Virtual Address Descriptor structures contain much

valuable information about processes and the structures they have allocated (such as

mapped files). VAD Tools (Dolan-Gavitt, 2007) are a set of scripts written in python that are

able to parse through this information for things that are of interest to a forensic investigator.

 There are five scripts available: vadwalk.py, vadinfo.py, vaddump.py, procdump.py,

and listdll.py. The vadwalk.py script traverses the VAD tree and prints it out as a table or an

ASCII tree; it can also create a GraphViz file that can be loaded into a visualizer to display the

tree. The vadinfo.py script, as the name implies, spells out detailed information from the

VAD, including files mapped into the process’s address space such as DLLs. The

vaddump.py and procdump.py scripts both extract memory regions from the VAD tree –

procdump.py is specific to executables such as .dll files and .exe files that are stored in the

memory image. Finally, listdll.py prints out a list of all of the modules (DLLs) that are loaded

for a specific process.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 50

 Figure 8 shows an example of the output from vadwalk.py generated by Andreas

Schuster (Schuster, 2007).

Figure 8: A reconstruction of the VAD tree using the script vadwalk.py (Schuster, 2007).

 The VAD Tools are advanced and low-level, but extremely useful for parsing through

data structures in memory and extracting information. In particular, the ability to reconstruct

an .exe file or a .dll file is a useful capability.

6.9 Commercially Available Tools

There are many commercially available tools that perform much of the functionality

described in section 5, and can be used instead of the free, open-source tools described

earlier in this section. In this section a few products that are particularly well-known are briefly

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 51

described.

Encase Enterprise (Guidance Software, 2008), one of the most widely-used forensic

tools, has a “Snapshot” utility that will capture the volatile data that exists in RAM on certain

types of systems, and will parse the data so that it is organized and more meaningful to the

analyst. Currently Encase does not provide the analyst with a raw capture of the data, so

analysts must rely on the software to correctly interpret the memory and find everything of

interest.

F-Response is another tool that allows remote, read-only access to the physical

memory of a machine of interest to the analyst. It does not actually capture the data (an

analyst would need another program to perform the capture).

HBGary Responder (HBGary, 2009) is a very powerful tool that performs memory

analysis, and will reverse-engineer malware that is pulled out of memory. The malware

analysis capability is of particular interest – it allows a suspicious executable found in memory

to be extracted, disassembled, and scanned for suspect code and functionality. HBGary also

has a software utility called FastDump that is available for free and can be used to capture

physical memory.

These commercial tools are useful, and in some cases their functionality is easier to

leverage than open source tools, or they have capabilities that open source tools lack. Still, it

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 52

is important to note that it is not necessary to have expensive commercial tools to perform a

thorough and effective analysis of the volatile memory.

7. Cautions and Considerations

One concern with performing memory analysis is that the act of acquiring memory can

cause changes to the system being analyzed. In particular, running a program to collect

information from volatile memory often starts up a process on the machine in question, which

of course adds new data to the volatile memory. This data could potentially overwrite critical

data related to the investigation.

A related problem is that when this happens and information related to capturing the

memory is put into RAM, the analyst is mixing the results of the analysis with the data that

was previously stored on the system. This makes it necessary for the analyst to differentiate

between what was put on the system as a result of collecting the data, and what was there

before. An analyst should make sure to familiarize his or herself with what the footprint of

running the tools used to capture volatile memory looks like in order to quickly eliminate that

data and keep from wasting valuable time trying to figure out whether it is relevant or not.

It is also important to understand that at any given moment the state of a system’s

volatile memory is not reproducible. It essentially would be an impossible task to get the

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 53

machine’s memory to look exactly the same, even if all the same actions were performed

after a system was booted up, due to the fact that the machine may load programs into

different areas of memory.

Another concern is whether you can trust the operating system to tell the truth about

what is actually in memory. An attacker could easily trojanize the commands that capture

volatile memory and instead of recording an accurate representation of the data stored in

RAM, the command might instead omit important details that the attacker does not want an

analyst to see, or even provide a completely false set of data. Analysts must be careful to

use their own tools to capture memory, rather than relying on those that the attacker has had

access to.

Even more worrisome is that an advanced attacker might alter the way the operating

system itself works to hide data from the analyst – as an example, the operating system

stores the processes that are currently running in a linked list. In order to hide a process that

the attacker has started and wants to keep an analyst from seeing, the attacker could change

the pointers in the linked list so that that particular process is omitted each time the operating

system traverses the project list.

All of these issues need to be taken into consideration when using volatile memory in a

forensic analysis. None of them make the analysis less valuable; they are simply facts that

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 54

need to be in the analysts arsenal so that he or she will know what to do when faced with

such a situation.

8. Conclusion

Forensic analysis on volatile memory is by no means perfected. Researchers and

analysts are coming up with new and improved techniques for recovering data from memory

on a regular basis, and there is still much work that needs to be done in this field. As

technology continues to develop – and as malicious users come up with new ways to attack

and exploit that technology – the need for forensic analysis capabilities that encompass the

physical memory will only increase.

In this paper, we discussed why the ability to perform forensic analysis on volatile

memory is a valuable asset to a forensic analyst. In particular, this paper outlined what types

of information can potentially be recovered from volatile memory, and how that information

might relate to an investigation. Current techniques for recovering this data from memory

were also discussed – when possible, techniques applicable to both Windows and Unix

systems were described. Finally, a subset of the current tools available to analysts who wish

to perform analysis on volatile memory was described. A brief discussion of what to be

careful of and what to keep in mind when analyzing volatile memory was also provided.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 55

Many researchers believe that volatile memory is becoming the location of choice for

attackers and other malicious users to store information they do not want found, or execute

harmful code that they do not want reverse-engineered. There is ample evidence to support

this theory; it is convincing simply because the majority of incident response teams do not

collect volatile memory, and the majority of analysts are not equipped to decipher relevant

information from it. In addition, several recent pieces of malware have been written to exist

solely in memory and never touch the hard drive, effectively evading any analysis that only

looks at the physical disk. It is logical to assume that malicious users will continue to move

toward using physical memory instead of the hard disks, and analysts will need to adapt to

that movement.

The aim of this paper was to make an argument for adding analysis of physical

memory to the toolkit of the forensic analyst, and to make that goal accessible by describing

some of the techniques and tools used by analysts who are already looking at volatile

memory. Armed with this knowledge, analysts who are looking to expand their skill set and

become more effective and proficient at their work can begin to explore this exciting branch of

digital forensics.

9. References

Bovet, D., & Cesati, M. (2006). Understanding the Linux Kernel (3 ed.). Sebastopol,

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 56

CA: O'Reilly Media, Inc.

Burdach, M. (2005, July 9). An Introduction to Windows memory forensic. Retrieved

October 25, 2008, from http://forensic.seccure.net/

Burdach, M. (2005, March). Digital Forensics of the Physical Memory. Retrieved

January 4, 2009, from Forensic Focus: http://www.forensicfocus.com/

Burdach, M. (2006). DigitalInvestigation. Retrieved from http://forensic.seccure.net

Carrier, B. (2005). File System Forensic Analysis. New York, New York: Addison-

Wesley.

Carrier, B., & Grand, J. (2004, March). A Hardware-Based Memory Acquisition

Procedure for Digital Investigations. Journal of Digital Investigations .

Dolan-Gavitt, B. (2007). VADTools. SourceForge.

Eilam, E. (2005). Reversing: Secrets of Reverse Engineering. Indianapolis, Indiana:

Wiley Publishing, Inc.

Farmer, D., & Venema, W. (1999, August). Memdump.

Garfinkel, T., Pfaff, B., Chow, J., & Rosenblum, M. (2004). Data lifetime is a systems

problem. ACM SIGOPS European Workshop (p. 10). New York: ACM.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 57

GMG Systems, Inc. (2007). KnTTools.

Guidance Software. (2008). Computer Forensics. Retrieved March 3, 2009, from

http://www.guidancesoftware.com/

HBGary. (2009). Responder Professional. Retrieved January 15, 2009, from HBGary:

http://www.hbgary.com/responder_pro.html

Microsoft Corporation. (2005, August). Windows Feature allows a Memory.dmp file to

be generated with the keyboard. Redmond, Washington, USA: Microsoft Corporation.

Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., & Weaver, N. (2003).

Inside the Slammer Worm. IEEE Security and Privacy. 1, pp. 33-39. Piscataway: IEEE

Educational Activities Department.

Petroni, N. L., Walters, A., Fraser, T., & Arbaugh, W. A. (2006, December). FATKit: A

Framework for the Extraction and Analysis of Digital Forensic Data from Volatile System

Memory. Digital Investigation , 3 (4), pp. 197-210.

Russinovich, M. E., & Solomon, D. A. (2005). Windows Internals (4th ed.). Redmond,

Washington: Microsoft Press.

Schuster, A. (2007, May 19). Memory Analysis: Walking the VAD Tree. Retrieved

December 2008, from Computer Forensic Blog:

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 58

http://computer.forensikblog.de/en/2007/05/walking_the_vad_tree.html

Schuster, A. (2007, November 27). PTFinder Version 0.3.05. Retrieved January 2009,

from Computer Forensic Blog:

http://computer.forensikblog.de/en/2007/11/ptfinder_0_3_05.html

Schuster, A. (2006). Searching for processes and threads in Microsoft Windows

memory dumps. The Proceedings of the 6th Annual Digital Forensic Research Workshop. 3,

pp. 10-16. Digital Investigation.

Sparks, S., & Butler, J. (2005). Shadow Walker: Raising The Bar For Windows Rootkit

Detection. Retrieved December 2008, from Phrack:

http://www.phrack.org/issues.html?issue=63&id=8#article

Stevens, D. (2007, January 30). XORSearch.

Szor, P. (2005). Virus Research and Defense. New York, New York: Addison-Wesley.

van Baar, R., Alink, W., & van Ballegooij, A. (2008). Forensic Memory Analysis: Files

Mapped in Memory. Digital Forensic Research Workshop. 5, pp. 52-57. Elsevier Ltd.

Volatile Systems. (2008). FATKit: The Forensic Analysis ToolKit. Retrieved December

2008, from http://4tphi.net/fatkit/

Volatile Systems. (2008). The Volatility Framework. Retrieved November 2008, from

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Techniques and Tools for Recovering and Analyzing Data from Volatile Memory

 59

Volatile Systems: https://www.volatilesystems.com/

Last Updated: July 6th, 2020

Upcoming SANS Training
Click here to view a list of all SANS Courses

SANS Amsterdam August 2020 Part 1 Amsterdam, NL Aug 03, 2020 - Aug 08, 2020 Live Event

SANS Reboot - NOVA 2020 Arlington, VAUS Aug 10, 2020 - Aug 15, 2020 Live Event

SANS Amsterdam August 2020 Part 2 Amsterdam, NL Aug 17, 2020 - Aug 22, 2020 Live Event

SANS FOR508 Canberra August 2020 Canberra, AU Aug 17, 2020 - Aug 22, 2020 Live Event

SANS Virginia Beach 2020 Virginia Beach, VAUS Aug 30, 2020 - Sep 04, 2020 Live Event

SANS Philippines 2020 Manila, PH Sep 07, 2020 - Sep 19, 2020 Live Event

SANS London September 2020 London, GB Sep 07, 2020 - Sep 12, 2020 Live Event

SANS Baltimore Fall 2020 Baltimore, MDUS Sep 08, 2020 - Sep 13, 2020 Live Event

SANS Munich September 2020 Munich, DE Sep 14, 2020 - Sep 19, 2020 Live Event

SANS Network Security 2020 Las Vegas, NVUS Sep 20, 2020 - Sep 25, 2020 Live Event

SANS Northern VA - Reston Fall 2020 Reston, VAUS Sep 28, 2020 - Oct 03, 2020 Live Event

SANS San Antonio Fall 2020 San Antonio, TXUS Sep 28, 2020 - Oct 03, 2020 Live Event

Oil & Gas Cybersecurity Summit & Training 2020 Houston, TXUS Oct 02, 2020 - Oct 10, 2020 Live Event

SANS Tokyo Autumn 2020 Tokyo, JP Oct 05, 2020 - Oct 17, 2020 Live Event

SANS Amsterdam October 2020 Amsterdam, NL Oct 05, 2020 - Oct 10, 2020 Live Event

SANS FOR500 Milan 2020 (In Italian) Milan, IT Oct 05, 2020 - Oct 10, 2020 Live Event

SANS OnDemand OnlineUS Anytime Self Paced

SANS SelfStudy Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/courses?utm_source=Print&utm_medium=Reading+Room+Paper&utm_content=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory+Cover&utm_campaign=SANS+Courses
http://www.sans.org/link.php?id=59042&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Amsterdam_August_2020_Part_1
http://www.sans.org/link.php?id=59042&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Amsterdam_August_2020_Part_1
http://www.sans.org/link.php?id=66295&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Reboot_-_NOVA_2020
http://www.sans.org/link.php?id=66295&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Reboot_-_NOVA_2020
http://www.sans.org/link.php?id=66220&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Amsterdam_August_2020_Part_2
http://www.sans.org/link.php?id=66220&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Amsterdam_August_2020_Part_2
http://www.sans.org/link.php?id=66200&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_FOR508_Canberra_August_2020
http://www.sans.org/link.php?id=66200&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_FOR508_Canberra_August_2020
http://www.sans.org/link.php?id=61265&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Virginia_Beach_2020
http://www.sans.org/link.php?id=61265&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Virginia_Beach_2020
http://www.sans.org/link.php?id=59870&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Philippines_2020
http://www.sans.org/link.php?id=59870&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Philippines_2020
http://www.sans.org/link.php?id=61740&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_London_September_2020
http://www.sans.org/link.php?id=61740&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_London_September_2020
http://www.sans.org/link.php?id=61280&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Baltimore_Fall_2020
http://www.sans.org/link.php?id=61280&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Baltimore_Fall_2020
http://www.sans.org/link.php?id=59317&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Munich_September_2020
http://www.sans.org/link.php?id=59317&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Munich_September_2020
http://www.sans.org/link.php?id=60635&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Network_Security_2020
http://www.sans.org/link.php?id=60635&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Network_Security_2020
http://www.sans.org/link.php?id=61290&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Northern_VA_-_Reston_Fall_2020
http://www.sans.org/link.php?id=61290&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Northern_VA_-_Reston_Fall_2020
http://www.sans.org/link.php?id=61295&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_San_Antonio_Fall_2020
http://www.sans.org/link.php?id=61295&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_San_Antonio_Fall_2020
http://www.sans.org/link.php?id=63580&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=Oil_Gas_Cybersecurity_Summit_Training_2020
http://www.sans.org/link.php?id=63580&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=Oil_Gas_Cybersecurity_Summit_Training_2020
http://www.sans.org/link.php?id=59755&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Tokyo_Autumn_2020
http://www.sans.org/link.php?id=59755&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Tokyo_Autumn_2020
http://www.sans.org/link.php?id=59047&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Amsterdam_October_2020
http://www.sans.org/link.php?id=59047&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_Amsterdam_October_2020
http://www.sans.org/link.php?id=66410&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_FOR500_Milan_2020_In_Italian
http://www.sans.org/link.php?id=66410&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_FOR500_Milan_2020_In_Italian
http://www.sans.org/link.php?id=1032&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_OnDemand
http://www.sans.org/link.php?id=1032&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_OnDemand
http://www.sans.org/link.php?id=208&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_SelfStudy
http://www.sans.org/link.php?id=208&rrpt=Techniques_and_Tools_for_Recovering_and_Analyzing_Data_from_Volatile_Memory&rret=SANS_SelfStudy

