
Wired for Management Baseline

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Wired for Management Baseline

Version 2.0 Release

Specification to help reduce Total Cost of Ownership
for business computers.

December 18, 1998
Intel Corporation

Wired for Management Baseline

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

This document is for informational purposes only. INTEL MAKES NO WARRANTIES,
EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or
other intellectual property rights covering subject matter in this document. The furnishing of this
document does not give you any license to the patents, trademarks, copyrights, or other
intellectual property rights except as expressly provided in any written license agreement from
Intel Corporation.

Intel does not make any representation or warranty regarding specifications in this
document or any product or item developed based on these specifications. INTEL
DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OR MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND FREEDOM FROM INFRINGEMENT. Without limiting the generality of the
foregoing, Intel does not make any warranty of any kind that any item developed based
on these specifications, or any portion of a specification, will not infringe any copyright,
patent, trade secret or other intellectual property right of any person or entity in any
country. It is your responsibility to seek licenses for such intellectual property rights
where appropriate. Intel shall not be liable for any damages arising out of or in
connection with the use of these specifications, including liability for lost profit, business
interruption, or any other damages whatsoever. Some states do not allow the exclusion
or limitation of liability or consequential or incidental damages; the above limitation may
not apply to you.

† Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owners’ benefit, without intent to infringe.

Copyright © 1998, Intel Corporation. All rights reserved.

Wired for Management Baseline i

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Table of Contents

1. INTRODUCTION...1

1.1 Need To Lower Total Cost of Ownership ..1
1.2 The Solution: Making Systems Universally Manageable and Universally Managed2
1.3 Target Audience ...3
1.4 Document Organization..3
1.5 Related Specifications ...4

1.5.1 ACPI...4
1.5.2 DMI, CIM and SNMP ..4
1.5.3 Network PC Guidelines...4
1.5.4 Integration with Enterprise Management ...4
1.5.5 SES/SIS ..4
1.5.6 SMBIOS ...5
1.5.7 WBEM..5
1.5.8 WMI..5
1.5.9 Boot Integrity Services..5
1.5.10 Preboot Execution Environment (PXE) Specification ..5

1.6 Baseline Evolution ..5
1.6.1 Wired for Management 2.0 Updates ...6

2. OVERVIEW..8

2.1 Concepts ...8
2.1.1 Guidelines for referring to products based on the requirements contained in this
reference specification ...9
2.1.2 Platform Types..9
2.1.3 OS-Present vs. OS-Absent...9
2.1.4 Occasionally-Connected Systems ..9
2.1.5 Dynamic Peripherals...10
2.1.6 Power Management Environment...10

2.2 Baseline Technologies ...10
2.2.1 Power Management ..10
2.2.2 Instrumentation ..11
2.2.3 Preboot Execution ..11
2.2.4 Problem Resolution ..11

3. POWER MANAGEMENT ...13

3.1 Requirements..13
3.1.1 Platform Requirements ...13
3.1.2 Waking up a System Remotely ..14
3.1.3 Remote Wakeup Techniques...14
3.1.4 Bus Requirements...14

3.2 Power-managed Systems ..14
3.2.1 ACPI Summary...15

3.2.1.1 ACPI Description ..15
3.2.1.2 Power States..16

Wired for Management Baseline ii

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

3.2.2 Platform Power Management Characteristics ..16
3.3 Off-hours Management...17
3.4 Considerations ..18

3.4.1 OS-Absent Environment ...18
3.4.2 Desktop Platforms...18
3.4.3 Mobile Platforms ..18
3.4.4 Server Platforms ...18

3.5 Summary of Platform Requirements ..19

4. INSTRUMENTATION REQUIREMENTS ..20

4.1 Requirements..20
4.2 General Instrumentation Requirements ...22

4.2.1 Management Data...22
4.2.2 Dynamic Devices...22
4.2.3 Deployment ...22

4.3 Desktop Management Interface (DMI)...22
4.3.1 Management Data...22
4.3.2 Management Agent...23
4.3.3 Instrumentation Code ...23
4.3.4 Events ...23
4.3.5 Guide to DMI Instrumentation Development..23
4.3.6 Local and Remote Access..23

4.4 Simple Network Management Protocol (SNMP)..24
4.4.1 Management Data...24
4.4.2 Management Agent...24
4.4.3 Instrumentation Code ...24
4.4.4 Traps...24
4.4.5 Local and Remote Access..24

4.5 Common Information Model (CIM)...25
4.5.1 Management Data...25
4.5.2 Management Framework..25
4.5.3 Instrumentation Code ...25
4.5.4 Events ...25
4.5.5 Local and Remote Access..26

4.6 Cross-Mapping Strategies ..26
4.7 Considerations ..27

4.7.1 OS-Absent Environment ...27
4.7.2 Desktop Platforms...27
4.7.3 Mobile Platforms ..27
4.7.4 Server Platforms ...27

4.8 Summary of Platform Requirements ..28

5. PLATFORM FIRMWARE...29

5.1 Requirements..29
5.2 Preboot Execution Environment (PXE) ...30

5.2.1 Overview ...30
5.2.1.1 Purpose...30
5.2.1.2 Preboot Execution Environment (PXE) Protocol Overview..................................30
5.2.1.3 Preboot Execution Environment (PXE) Overview ..31

Wired for Management Baseline iii

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

5.2.2 PXE Client Specifications...31
5.2.3 Deployment Considerations ..31

5.2.3.1 Configuration Servers ...31
5.2.3.2 Clients...31

5.2.4 Remote Lockout Considerations ...32
5.2.4.1 Downloaded Executables...32
5.2.4.2 Client ..32
5.2.4.3 Int 15h Get Remote Lockout settings..32
5.2.4.4 Int 15h Set Remote Lockout settings ..32

5.3 SMBIOS Data and Standard Access to Platform Data ..33
5.3.1 SMBIOS Data...33
5.3.2 System Boot Information ..35

5.3.2.1 Identifying the System Boot Status ...35
5.3.3 System Network Boot Control...36

5.3.3.1 BIOS Characteristics Extension Byte 2..37
5.4 OS-absent Security Infrastructure ...37
5.5 SNMP Traps...37
5.6 Considerations ..38

5.6.1 Desktop Platforms...38
5.6.2 Mobile Platforms ..38
5.6.3 Server Platforms ...38

5.7 Summary of Platform Requirements ..39

6. PROBLEM RESOLUTION REQUIREMENTS ...40

6.1 Requirements..40
6.2 Solution Exchange ..41
6.3 Service Incident Exchange Requirements...41
6.4 Considerations ..41

6.4.1 OS-absent Environment..41
6.4.2 Desktop Platforms...42
6.4.3 Mobile Platforms ..42
6.4.4 Server Platforms ...42

6.5 Summary of Platform Requirements ..42

7. CHECKLIST: DESKTOP PLATFORMS ..43

7.1 Detailed Requirements..43

8. CHECKLIST: MOBILE PLATFORMS...47

8.1 Detailed Requirements..47

9. CHECKLIST: SERVER PLATFORMS...52

9.1 What Makes Servers Different ...52
9.2 Management Characteristics of Servers...52
9.3 Detailed Requirements..54

9.3.1 Mass Storage Subsystems ...57

10. TERMS AND ACRONYMS ...59

11. INFORMATION AND RESOURCE REFERENCES...66

Wired for Management Baseline iv

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Attachment A UUIDs and GUIDs ..A-1
Attachment B Cross-Mapper Considerations...B-1
Attachment C WfM DMI Mapping to CIM and SNMP...C-1

Wired for Management Baseline v

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Executive Summary

Wired for Management (WfM) is an Intel initiative to improve the manageability of desktop,
mobile, and server systems. Better manageability will add value by decreasing the Total Cost
of Ownership (TCO) of business computing while taking advantage of the power and
flexibility of high-performance computing.

The Wired for Management Baseline Specification continues the work of the Wired for
Management initiative. This Baseline is designed to help manufacturers produce systems that
can be effectively managed to reduce customers’ support costs. This version of Wired for
Management Baseline extends and enhances the interfaces defined by previous versions of the
Baseline. Desktop-, mobile-, and server-specific requirements for each area are gathered into
platform-specific chapters. By outlining a required minimum level of management capabilities
for all desktop, mobile, and server systems, the WfM Baseline lays a standards-based
foundation on which manufacturers can build to provide even higher levels of system
manageability.

Systems based on the WfM Baseline Specification feature software agents, hardware features,
and other capabilities that enhance networked operation and reduce support costs, while taking
advantage of the system’s flexibility, performance, and compatibility with existing networks.
The design guidelines specified in the Baseline enable manufacturers to quickly deliver the
integrated capability for central administration, remote network configuration, off-hours
maintenance, and constant monitoring of system health.

This version of the WfM Baseline defines the requirements for:

n Instrumentation to ensure that all hardware devices can be recognized and acted on by
software, aiding in successful remote troubleshooting and repair.

n Standard interfaces and protocols to allow remote network access and interoperability
between different vendor implementations of instrumentation and different management
applications.

n Platform agents that allow remote configuration of all system software, from the
operating system through drivers and applications, even without a formatted hard disk.

n Power management to allow maintenance of networked systems during off-hour periods.

n Standard trouble ticket transactions and formats to allow systems to participate in
trouble ticket exchange with management applications and help desks.

Wired for Management Baseline Page 1

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

1. Introduction

The Wired for Management Baseline focuses on reducing the cost of managing systems by
identifying the key interoperability specifications required to allow any management
application to perform required functions on any type of system from any manufacturer.

1.1 Need To Lower Total Cost of Ownership

The combination of personal computers, servers, and networks has proven potent for
businesses, as connected systems have come to play a central role in a wide range of mission-
critical business applications. But while businesses have enjoyed the increased abilities that
networked systems bring to their organizations, their Information Technology (IT) departments
have had to deal with the increasing administrative burden and costs of keeping things running
smoothly. The proliferation of hardware and software choices, the expansion of system
capability and the explosion of the Internet have made the corporate computing environment
increasingly complex — and expensive — to deploy and manage. With large environments of
mixed computing devices, it becomes increasingly difficult for IT organizations to maintain
machines for maximum availability, repair them quickly, and manage them as a vital corporate
asset.

The ongoing expense incurred in deploying and managing is a major factor in the Total Cost of
Ownership (TCO) of personal computers and servers. Studies by Gartner Group and others
use different methods for computing TCO. Some include so-called “soft” costs, such as lost
productivity when an employee interrupts the colleague in the next office for help with a
system configuration question. Others focus only on “hard” costs, such as administrative tools
and salaries of administrative personnel. A typical figure for “soft” TCO is around $8,000 per
year; “hard” cost numbers are usually in the $2,000-$3,000 range. Whichever way they choose
to compute TCO, IT departments agree that lower costs are needed to keep their businesses
competitive.

The Wired for Management Baseline addresses some key factors that contribute to high TCO:

n Ease of use problems. The number of supported users and devices has been increasing
rapidly. Understandably, many of these new users lack the desire and/or the skills to
effectively manage their systems. This causes frequent calls to technical support because
end-users cannot resolve even the most basic of questions about their system.

n Growing demands for availability. As systems take on more of an organization’s core
business functions as well as its communications and productivity applications, the
pressure for IT to keep the computing environment available rises. Costs of downtime
range from thousands to millions of dollars per hour. Yet a growing number of situations
require taking the system down, for example, virus identification and cleaning, installing
upgrades, or providing other types of system maintenance. Downtime also occurs
because IT may lack needed information on configurations, bandwidth, or usage models.

Wired for Management Baseline Page 2

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

n Time-consuming repairs. The complexity that comes with an open, mixed computing
environment increases the time to diagnose, troubleshoot and fix a failure. Users who
cannot accurately describe their system or problem increase the number of phone calls to
technical support. Support personnel, who often lack the tools to remotely determine the
problem or system configuration, must schedule on-site visits. Fixing a failure often
requires multiple trips. Most current help desk products do not provide automated
problem resolution assistance. As a result, repairs are slow and labor-intensive; support
personnel tend to burn out quickly and have high turnover, all of which cause IT costs to
rise.

n Difficulties of asset management. Asset management is the process of maximizing the
use of assets to produce revenue while minimizing their overall costs. When the
computing investment is distributed, inventory and tracking information is difficult and
time-consuming to gather. Currently it is handled as a manual process — one that is
often not accurate. Stories abound of otherwise well-managed companies that find after
doing an inventory they have thousands more systems than they thought — or thousands
fewer. IT organizations need inventory and configuration data for issues such as
server/license consolidation and rationalization, leasing considerations, analyzing
effectiveness and costs of training, software upgrade analysis for volume purchasing
plans, cost efficiency of outsourcing, warranty usage improvements, and effective
management of cascading technology.

1.2 The Solution: Making Systems Universally Manageable and Universally Managed

Fortunately, the connected system has the capacity to lower the cost of management. The
“intelligence” of the platform and its connection to the network can enable the system to play
an active role in self-management and make it easier for IT organizations to automate and
centralize management activities. Today, however, fully managed systems are the exception
rather than the rule.

There are two major reasons for this situation:

n While many systems contain features intended to make them manageable, there is no
common set of features that are guaranteed to be found in all systems.

n Manageability features are typically made available through proprietary means, not open
industry specifications.

The result is a tight coupling between management applications and particular platforms:
XYZ-brand systems can be managed only by the XYZ management application. In a business
with systems from multiple suppliers, this leads to two choices: deploy an unwieldy,
complicated collection of management applications that don’t interoperate, or continue to use
labor-intensive manual procedures. Both options increase TCO.

The Wired for Management Baseline resolves these shortcomings by defining a targeted
minimum set of management features for all platforms. The features are made available
through well-defined, and in some cases, industry-standard interface specifications, giving
management applications a consistent way to access those features. The goal is a mix-and-
match capability among platforms and management applications: any platform that meets the
Baseline can be managed by any management application that uses the Baseline’s interface
specifications.

Wired for Management Baseline Page 3

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Examples of features defined in the Baseline that help efficiently manage systems over
networks include:

n A common set of system instrumentation that provides remote management applications
access to a common set of platform characteristics and settings in a standard format
using standard interface specifications.

n Power management and remote wake-up features that enable off-hours maintenance and
management by providing interface specifications for ‘waking up’ a ‘sleeping’ system.

n Platform firmware is defined to provide instrumentation and standard access for
configuration and remote booting in an OS absent environment.

n Standard trouble ticketing features that allow systems to automatically report problems
and receive solutions.

Note that the Baseline specifies a minimum set of management capabilities. Vendors of both
platforms and management applications are encouraged to further increase the value of their
products by incorporating additional manageability features.

1.3 Target Audience

This document is intended as a reference for:

n System manufacturers, and their hardware and software suppliers, seeking to ensure
their systems can be managed by a variety of management applications.

n Management application suppliers seeking a baseline for system features, to which they
can design.

n IT professionals seeking to specify system features which will work with a variety of
chosen management applications to reduce their overall cost of ownership.

1.4 Document Organization

The remainder of this document describes the Wired for Management Baseline.

Chapters 4 through 6 specify the Baseline functionality for each technology category and
describe the interface specifications used to access that functionality.

Chapters 7 through 9 provide checklists describing the specific requirements for each platform
type. Chapter 10 is a brief glossary of terms and acronyms. Chapter 11 lists documents that
are referenced in this Baseline Specification and provides information about how to obtain
them.

Throughout this Baseline, the following definitions apply:

n Required. Features that must be implemented to adhere to this Baseline for a particular
platform type.

n Recommended. Features that support or improve manageability. If a recommended
feature is implemented, it must meet the requirements for that feature as defined in this
Baseline. Some recommended features may become requirements in the future.

Wired for Management Baseline Page 4

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

n [TAG]: Identifies a document reference. See the associated [TAG] in Chapter 11 for
information about how to obtain copies of the document.

1.5 Related Specifications

The WfM Baseline is designed for compatibility with current and emerging industry
specifications/guidelines.

1.5.1 ACPI

The WfM Baseline Specification for remote wakeup and power management promotes the use
of the Advanced Configuration and Power Interface (ACPI).

1.5.2 DMI, CIM and SNMP

Defining management-related data is a necessary task to enable access and use of this data. For
this purpose, the Wired for Management Baseline specification defines the use of one of the
following:

n Internet Engineering Task Force’s (IETF) Simple Network Management Protocol
(SNMP) and Management Information Base (MIB) modules

n Desktop Management Task Force’s (DMTF’s) Desktop Management Interface (DMI)
v2.00 and Management Information Format (MIF) syntax, OR

n Common Information Model (CIM) V2.0 and Management Object Format (MOF)
syntax

1.5.3 Network PC Guidelines

The interface specifications in the WfM Baseline for instrumentation, remote wake-up, and
remote new system setup are completely compatible with those described in the Network PC
Guidelines. Thus, it is possible for the same applications to manage Network PCs and
desktops, mobiles, and servers conforming to the current Baseline.

1.5.4 Integration with Enterprise Management

Managing systems in a corporate enterprise might require that these devices integrate with
current enterprise management applications. WfM Baseline recommends using SNMP support,
in addition to DMI or CIM, in cases where management applications do not support these
other standards directly. If SNMP support is provided, the data required by this Baseline must
be provided.

1.5.5 SES/SIS

In order for platforms to participate in standardized problem reporting and resolution, this
Baseline describes the requirements for an agent that conforms to the Solution Exchange
Standard and Service Incident Exchange Standard [SES/SIS], defined by the Customer
Support Consortium and the Desktop Management Task Force.

Wired for Management Baseline Page 5

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

1.5.6 SMBIOS

The SMBIOS specification [SMBIOS] describes system management requirements for
BIOS’s, including instrumentation.

1.5.7 WBEM

The Baseline is designed for compatibility with current and emerging industry standards.
WBEM (Web-Based Enterprise Management) is an industry initiative, that promotes an
architecture for object-based management for the enterprise. The initiative encompasses three
tenets: 1) a unifying schema for representation of enterprise-wide management data; 2) a
common access method to the management data; and 3) integration of existing management
standards (SNMP, DMI, CMIP,...). CIM, being defined by the DMTF, provides the unifying
schema for WBEM. As Web-Based Enterprise Management (WBEM) technology and
specifications become available, the Baseline will also specify the use of WBEM mechanisms,
where pertinent.

1.5.8 WMI

The Windows Management Instrumentation (WMI) is a new driver instrumentation interface
provided in Windows† 98 and Windows NT† 5.0, as part of Microsoft’s WBEM/CIM
framework.

1.5.9 Boot Integrity Services

The Boot Integrity Services Application Programming Interface [BIS] specifies an interface
for verifying the integrity of data using digital signatures, and related functions. These
functions are intended for use during OS-absent operation of the platform.

1.5.10 Preboot Execution Environment (PXE) Specification

[PXE] specifies three technologies that establish a common and consistent set of preboot
services within the boot firmware of Intel Architecture systems

n A uniform protocol for the client to request the allocation of a network address and
subsequently request the download of a Network Bootstrap Program (NBP) from a
network boot server.

n A set of APIs available in the preboot firmware environment in the machine that
constitute a consistent set of services that can be employed by the NBP or the BIOS.

n A standard method of initiating the preboot firmware to execute the PXE protocol on the
client machine.

1.6 Baseline Evolution

The WfM Baseline Specification cannot be static, and will evolve over time. Intel expects
major revisions of the Baseline to occur approximately on a yearly basis as platform vendors
consolidate the current feature set and additional features win widespread support.

Wired for Management Baseline Page 6

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

This version of the Baseline focuses on desktop, mobile, and server systems. Subsequent
versions may include additional platform types (for example, workstations) and will include
WBEM interfaces and specifications as these are developed from the standards bodies.

1.6.1 Wired for Management 2.0 Updates

This version of the Wired for Management Baseline:

n updates the requirements of the Wired for Management 1.1a technologies.

n adds new technologies to the Baseline.

n more fully describes the requirements for different types of platforms.

Specifically, the Power Management and Remote Wakeup sections of Wired for Management
1.1a have been combined into a single Power Management section in Wired for Management
2.0, which:

n requires ACPI.

n (desktop) requires that, if a remote connection is available, a system must be capable of
being woken up remotely from its recommended sleep state via one of three described
wakeup techniques. Recommended for mobiles and servers.

n recommends a sleep state for each platform type.

n (desktop, mobile) requires bus power management based on the published specification
for that bus type. Recommended for servers.

In general, the Wired for Management 2.0 Instrumentation section has been updated to
encourage the use of WBEM technology while applying the current requirements more equally
across DMI 2.0, SNMP, and WBEM. For instance, where Wired for Management 1.1a
encouraged the use of DMI events and required that, if events were generated, the format
comply to the DMI format; Wired for Management 2.0 requires that if events are generated,
they be compliant to the active management framework. In summary, Wired for Management
2.0:

n requires that one of three management frameworks (DMI 2.0, SNMP, WBEM) must be
installed and active on the system.

n requires that if a dynamic device is present, its instrumentation must also be present.

n addresses specific backward compatibility issues with Wired for Management 1.1a
instrumentation and cross compatibility issues between the different management
frameworks have been addressed.

The Wired for Management 1.1a Remote New System Setup has been expanded into the
Platform Firmware section in Wired for Management 2.0, which:

n (desktop, mobile) requires that the PreBoot Execution Environment (PXE), now
described in a separate PXE 1.0 specification be available. Recommended for mobiles
which do not have LAN on motherboard and for servers. PXE 1.0 also includes a new,
backward compatible split ROM architecture and more secure APIs.

n requires SM BIOS 2.2 or later, with tables populated by the specified required data.

n requires that a reason code for system startup be available.

Wired for Management Baseline Page 7

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

n requires that hardware which allows a local lockout must also allow remote lockout.

n recommends that SNMP traps be used when the OS is absent to report events (which
format to use is described in a separate specification).

n recommends that the Boot Integrity Services (described in a separate specification) be
implemented.

Additionally, Wired for Management 2.0 recommends the use of standard trouble tickets,
requiring that systems which generate trouble tickets do so in a standard manner.

Wired for Management Baseline Page 8

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

2. Overview

The Wired for Management Baseline reduces system management costs by addressing
requirements from the following three perspectives:

n Platforms. It describes those things which a system requires to be managed; for example,
hardware failure points.

n Management Application. It provides information and access methods that a
management application requires to be consistently present to perform its functions; for
example, access to system characterization and identification.

n User. It identifies those procedures that need to be present in order to ensure that
management occurs in a user-friendly manner; for example, resuming (not rebooting)
systems upon wakeup.

These requirements are applied to the interfaces and information available from a particular
system. This allows a Baseline system to be managed by a variety of management applications
built to these interfaces, thus providing a minimum management cost reduction regardless of
system manufacturer or application supplier.

2.1 Concepts

The features defined by the Baseline apply to several management environments or scopes:

n Enterprise. This usually refers to a “large” number of systems, connected by multiple
LANs, WANs, and potentially many sites.

n Work group. This is a “small” group of systems, possibly located geographically close,
potentially on the same LAN or a small number of LANs.

n Individual. This refers to the management of a single system. This may be an out-of-
office mobile system that is managed by a corporate help desk, a consumer system that
can be managed by a contract or OEM service, or a single server located in a branch
office of a larger enterprise.

A Baseline system will make its defined interfaces available regardless of the management
environment, and any level of management application can make use of them. All of these
management environments are abstracted by this Baseline into managed client’s and
management server’s. Any managed system is a managed client. In an enterprise or work
group environment, the servers themselves are managed clients. A management application
may reside on a management server or the managed client. There is no assumption that all
management applications reside on the same management server.

Additionally, for a given system, several common system characteristics and environments
must be taken into consideration by all of the Baseline features.

Wired for Management Baseline Page 9

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

2.1.1 Guidelines for referring to products based on the requirements contained in
this reference specification

Wired for Management 2.0 enabled systems, subsystems, or components (such as network
adapter, hard disk drive, or power supply) ship with all hardware and software elements
required by this Baseline for the platform or component type.

Systems, subsystems, and components are Wired for Management 2.0 upgradeable when the
system, subsystem, or component can be easily brought to enabled status when a customer or
integrator adds the missing Wired for Management 2.0 support (for example, by adding a NIC,
an option ROM, DMI software, and so on) through easily obtainable means (for example, web
downloadable, 1-800 number, or sending in a postcard).

Management applications are Wired for Management 2.0 compatible when the software
includes provisions for managing WfM-enabled systems using one or more of the management
functions specified by this Baseline.

2.1.2 Platform Types

This Baseline addresses three types of platforms:

n Desktop. Exemplified as the stationary single-user business or consumer system.

n Mobile. A portable system primarily distinguished by its battery-powered operation and
roaming, occasionally-connected nature.

n Server. A system which provides services to other clients, for example, printing or
shared file handling. In the context of specifying requirements for managed systems, this
Baseline describes requirements which affect the server when it is the target of
management operations. In these cases, the server is a managed client of the
management environment defined above.

The Baseline describes the general requirements for a particular capability in its main chapters
and then makes specific requirements as necessary for each platform type. More detailed
definitions of these types and a summarized checklist of their specific Baseline requirements
are given in the platform checklist chapters.

2.1.3 OS-Present vs. OS-Absent

Platforms must be manageable both before and after an OS is loaded. One goal of this Baseline
is to provide a useful and consistent subset of management functions when the OS is not
present. These functions are to be used if there are problems loading the OS, or for updates
(for example, BIOS) which can not be made when the OS is present. For more advanced
capabilities the OS must be loaded and, in fact, not all technologies are available when the OS
is absent.

2.1.4 Occasionally-Connected Systems

Many existing management systems assume the systems they manage are always available to
be managed if they are healthy. However, it is the normal condition for mobiles to be
disconnected from a communication link. This is also true for some desktops and servers in a
small business or home environment.

Wired for Management Baseline Page 10

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Taking the occasionally-connected system into consideration means some conceptually simple
changes, such as queuing requests until a connection exists. It also means some more subtle
considerations, such as handling the relationship to platform securitywhich has a different
definition for mobiles which are inherently theft-prone.

2.1.5 Dynamic Peripherals

Traditionally, desktop systems have assumed that installed peripherals are always connected to
the system (if they are healthy). Of course, mobile and server systems have not made the same
assumption. Additionally, the advent into the desktop of dynamic buses, such as the Universal
Serial Bus and 1394, makes dynamic peripherals a concern of all platform types.

Dynamic peripherals impact asset management, security, and instrumentation. For example, it
is not generally workable for a system manufacturer to know a priori all of the managed
peripherals that will be used with the system. Therefore, instrumentation can not be created
only at system design time but must be able to handle the attachment and removal of devices.

2.1.6 Power Management Environment

To reduce power consumption, more and more systems are being power-managed into lower
power states. However, not all of the system’s management functions can be made available in
such states. Therefore, consideration must be given to which functions are reasonably available
in low power states, how functions react as the system transitions between power states, and
how the system returns to a higher power state which provides the full set of management
capabilities.

2.2 Baseline Technologies

The WfM Baseline addresses requirements in four technologies. Wherever possible, existing
industry standards are identified for use. However, some technologies do not have adequate
public definition, and additional detailed specifications for such technologies are in the
appendices. The definition of each technology is summarized below. For more details, consult
the chapter describing the technology.

2.2.1 Power Management

Power management allows a system to consume less power, but still be fully operational in a
short period of time. This enables low power consumption and improved end-user experience
when starting up (really ‘waking up’) a system.

To minimize the downtime end-users experience for system maintenance and upgrades, a
manageable system must provide the ability to be automatically managed during off-hours,
when the system is not otherwise in use.

The WfM Baseline specifies that it must be possible to remotely wake up a managed system
from its sleep state. It further recommends a target sleep state based on platform type.

Wired for Management Baseline Page 11

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

2.2.2 Instrumentation

To begin reducing TCO, management applications must have complete programmatic access
to the state, control, and descriptive parameters of the system and its component subsystems. A
manageable system with instrumentation provides such access for both local and remote
applications. In addition, the instrumentation infrastructure provides the means by which the
system and its components can report state changes and unusual conditions autonomously (that
is, without being specifically queried by a management application).

To derive the full benefits of instrumentation, it must be possible to manage any system from
any management application. This is possible when the data is provided in standard format
through standard interfaces.

The WfM Baseline specifies standard data formats and standard remoteable interfaces for
instrumentation and defines the minimum set of data that a managed system must supply
through its instrumentation. This ensures the availability of information for:

n Problem detection and notification of the appropriate support organization.

n Problem diagnosis and correction.

n Tracking or logging the failure information.

n Computer equipment inventory.

By streamlining these processes, instrumentation increases a system’s ease of use, reduces the
labor costs involved in maintaining and supporting systems, and increases the IT
organization’s ability to administer and manage its business computing assets.

2.2.3 Preboot Execution

The Preboot Execution Environment (PXE) is a protocol and interfaces by which agents can be
loaded remotely onto the client to perform management tasks in the absence of a running OS.
The Preboot Execution Environment enables the automation of a number of management tasks.
Examples include:

n Initial configuration of new machines.

n Diagnosis of problems that prevent the operating system from functioning correctly.

n Configuration updates prior to booting the operating system.

The remote operations enabled by the Preboot Execution Environment can lower the costs of
administration and technical support, thus decreasing TCO.

2.2.4 Problem Resolution

Today, every management environment must have some form of trouble ticketing. However, a
particular strategy usually only works with explicit cross-developments by individual vendors.
This means that management applications usually cannot obtain timely and accurate
information about specific problems because the information is transient and not when the
problem occurred. This may also be because the only interface available to the management
application (or help desk) is a human user who may be expressing an opinion about what was
present on the system at the time the problem occurred.

Wired for Management Baseline Page 12

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

In addition to being a lossy operation, manual trouble ticketing is also unnecessarily
consumptive of elapsed time due to the required manual intervention, thus resulting in more
down time.

The standard trouble tickets recommended by this Baseline do not, by themselves, eliminate the
need for highly skilled technical personnel involved in problem-solving. But by identifying
standard formats and transactions for a platform agent, it allows the automatic and accurate
capture and forwarding of problem-solving information.

Wired for Management Baseline Page 13

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

3. Power Management

Power management contributes to lower TCO while enhancing user experience. The need for
power management is underscored by the requirement for performing remote off-hours
management in a manner which does not decrease system life. In addition, new regulations and
labeling programs are mandating tighter restrictions on platform power consumption. For
example, Energy Star requires that systems automatically power down to 30W or less when
not in use. Other programs call for lower power consumption than the current 30W limit, with
some specifying 5W or less.

Properly addressing power consumption restrictions leads to requirements in two areas:

n Power-managed systems. This includes the state and state transition definitions
necessary to appropriately describe power-managed states and the criteria under which
they are entered. This Baseline describes a power-managed system using the Advanced
Configuration and Power Interface (ACPI).

n Off-hours management. This includes the ability, commonly referred to as “Remote
Wakeup”, for a system to be in a low power state during off-hours and still be available
to be managed upon the request of a remote management server.

ACPI is an interface between the OS and the hardware and BIOS designed to achieve
independence between the hardware and the OS. The ACPI Tables, which describe a particular
platform’s hardware, are at the heart of the ACPI implementation and the role of the ACPI
BIOS is primarily to supply the ACPI Tables (rather than an API). ACPI provides the
opportunity to integrate the interface for controlling power management and Plug-and-Play
features on system devices.

3.1 Requirements

The following sections summarize the power management requirements on Baseline systems.
The section following discusses in more detail the exact nature of the requirements.

3.1.1 Platform Requirements

1. ACPI-compliant. Platforms must use ACPI-compliant motherboard components and
BIOS, and thus be capable of being power-managed by the operating system. Legacy
support for Advanced Power Management (APM) BIOS is not addressed by this
specification.

2. Recommended Sleep Mode. At least one ACPI sleep mode should be implemented in the
S1 to S3 range.

Wired for Management Baseline Page 14

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

3.1.2 Waking up a System Remotely

3. Remote Wakeup. It must be possible to remotely wake the system for the purpose of
remote management from at least one reduced power state, which may be either a Sleep
State (S1–S4) or a Soft Off state (S5).. This must be implemented via one of the techniques
described in section 3.1.3. Waking up the system should be as non-intrusive for the system
user as possible, and it is desirable that the system wake up without requiring a reboot.

3.1.3 Remote Wakeup Techniques

4. Magic Packet. This technology uses a small circuit in the LAN adapter to listen to a
unique frame when the rest of the system is asleep or off. A management application builds
and sends the Magic Packet to the target machine.

5. Packet Filtering. With this technology, the LAN adapter is programmed to recognize
several types of frames, depending on the protocols currently loaded by the OS, and to
wake up the system if one of these frames is sent to the target machine. Any application can
wake up a sleeping machine.

6. Wake on Ring. An incoming call on a modem wakes up a sleeping system.

3.1.4 Bus Requirements

7. Bus Power Management. If a given type of bus is implemented in a system, the devices
attached to that bus and the system in general must follow the power management
requirements for that particular bus type. For PCI devices this means that add-in adapters
must be PCI-PM compliant. It is strongly recommended that both device and system
vendors implement the 3.3Vaux power plane (PCI pin 14A) as defined by the “PCI
Engineering Change Request - Addition of 3.3Vaux signal to Connector.” The power
management requirements for a given bus type (for example, PCI; PC Cards; USB; 1394)
are given in its bus specification.

3.2 Power-managed Systems

This Baseline requires that a platform use ACPI-compliant motherboard components and
BIOS, and be “power management ready”. Additionally, all PCI add-in functions, such as
network interface adapters, must comply with the PCI Bus Power Management Interface
Specification [PCI-PM]. Support for device functionality in the D3cold state may be
accomplished by implementing the “PCI Engineering Change Request - Addition of 3.3Vaux
signal to Connector” or by an alternate power supply method. The [PCI-PM] specification
serves to extend the benefits of an ACPI platform to also include PCI add-in adapters. It is
strongly recommended that an ACPI-enabled operating system (for example, Windows NT
5.0) power-manages the system to reduce power consumption when the system is not in use.

For context and terminology purposes, ACPI is briefly summarized below; however, for
complete details, refer to the actual specification [ACPI].

For Operating System Directed Power Management (OSPM) platform implementation details
and tradeoffs, refer to the Instantly Available PC Power Management Design Guide [PC
POWER].

Wired for Management Baseline Page 15

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

3.2.1 ACPI Summary

ACPI defines the interfaces between the operating system software, the hardware, and BIOS
software. It also defines the semantics of these interfaces. The term operating system directed
power management (OSPM) refers to an operating system that uses the ACPI interfaces to
execute power management policies.

Figure 3-1 shows the software and hardware components relevant to ACPI and how they relate
to each other. ACPI describes the interfaces between components, the contents of the ACPI
Tables, and the related semantics of the other ACPI components. Note that the ACPI Tables,
which describe a particular platform’s hardware, are at the heart of the ACPI implementation,
and the role of the ACPI BIOS is primarily to supply the ACPI Tables (rather than an API).

Applications

ACPI Registers

HAL

ACPI Tables

Device Driver

OSPM System CodeKernel

ACPI BIOS

Platform Hardware BIOS

OS Dependent
Application APIs

OS Specific
technologies,
interfaces and

code
Existing
industry
standard
register

interfaces
to: CMOS,
PIC, PITS,

etc.

ACPI
Register
Interface ACPI

BIOS
Interface

ACPI
Table

Interface

OS Independent
technologies,

interfaces, code,
and hardware

- ACPI SPEC Covers this area

- OS Specific technology, not part of ACPI

- Hardware/Platform specific technology, not part of ACPI

Figure 3-1 OSPM/ACPI Global System

3.2.1.1 ACPI Description

ACPI has three runtime components:

1. ACPI Tables. These tables describe the interfaces to the hardware. These descriptions
allow the hardware to be built in flexible ways, and can describe arbitrary operation
sequences needed to make the hardware function. ACPI Tables may contain p-code
language, the interpretation of which is performed by the OS.

Wired for Management Baseline Page 16

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

2. ACPI Registers. The constrained part of the hardware interface, described (at least in
location) by the ACPI Tables.

3. ACPI BIOS. Refers to the portion of the firmware that is compatible with the ACPI
specification requirements. Typically, this is the code that boots the machine (as legacy
BIOSs have done) and implements interfaces for suspend, resume, and some restart
operations. The ACPI Description Tables are also provided by the ACPI BIOS. Note that
in Figure 3-1, the boxes labeled “BIOS” and “ACPI BIOS” refer to the same component on
a platform. The box labeled “ACPI BIOS” is broken out to emphasize that a portion of the
BIOS is compatible with the ACPI specification requirements.

3.2.1.2 Power States

Baseline systems have four distinct power states: Working, Sleeping, Soft Off, and Mechanical
Off. In the Working state, user mode application threads are dispatched and running.
Individual devices and processors may be in low-power states if they are not being used. Any
device the system turns off because it is not actively in use can be turned on with short latency.
(The meaning of “short” depends on the device. An LCD display needs to come on in sub-
second times, while it is generally acceptable to wait a few seconds for a printer to wake up.)
When the computer is idle or the user has pressed the power button, the OS will put the
computer into a reduced power state, Sleep (S1–S4) or Soft Off (S5). No user-visible
computation occurs in a reduced power state. The different power states provide varying
degrees of wake-up latency. For example, the Sleep states (S1–S4) save different levels of
context, while a Soft Off state requires a complete system reboot.

Both Sleep and Soft Off states consume very little power. In Soft Off only the Real Time
Clock and Standby power plane devices; such as the Power Button, portions of the ACPI
controller, PCI 3.3Vaux devices, etc.; consume power.. Sleep states, like S3, consume slightly
more power to support devices which retain system context or require lower latency
transitions to the Working State..

The power button on the front of a Baseline machine is redefined to be a “soft” button, which
will normally not turn the machine physically off, but will put it in a Soft Off or Sleeping state
instead. Unlike today’s on/off button, the soft on/off button sends a request to the system.
What the system does with this request depends on the policy issues derived from user
preferences, user function requests, and application data.

This specification requires that a system be capable of being remotely awakened, which may
occur from either a Sleep state (S1–S4), a Soft Off state (S5), or both. At least one of these
reduced power states must support a transition to the Working State via one of the Remote
Wake-up Techniques described in Section 3.1.3. This state would then be the power state of
choice for assertion by a power button, which would enable after-hours maintenance via
remote wake-up, although this is not required.

3.2.2 Platform Power Management Characteristics

Systems conforming to the WfM Baseline have the capability to be managed during off hours
by having different modes for Active and Idle:

n Active Mode. In active mode, clients are in the Working state, although they may put
unused devices into low power states whenever possible. OS-driven power management
allows careful tuning of when to do this.

Wired for Management Baseline Page 17

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

n Idle Mode. In idle mode, clients sleep as deeply as they can sleep but are still able to
wake up and answer service requests coming in over the network, phone links, etc.,
within required latencies.

3.3 Off-hours Management

If a system supports a reduced power state, it must be possible to bring the system to a fully
powered state in which all management interfaces are available. For the purposes of off-hours
management this is done by a communications peripheral (for example, LAN Adapter or
modem) recognizing that a wakeup has been requested. For example, the LAN adapter may
recognize a special packet as a signal to wake up the system.

When waking up using LAN communications, it is recommended that the LAN Adapter and
system use LAN packet filtering as a trigger. Packet filtering enables the system to recognize,
while in a reduced power state, that it is being addressed using normal LAN communications.
No special packets or other means are required.

A more detailed description of packet filtering as implemented in Windows NT 5.0 and
Windows 98, based on matching patterns specified by the local networking software, is
described in the Network Device Class Power Management Reference Specification, Version
1.0 [NDC PM] or higher. This applies specifically to Ethernet and token ring adapters. [NDC
PM] does not support ATM and ISDN adapters.

For additional packet filtering implementation guidelines, see the PC 97 Hardware Design
Guide [PC HDG] from Microsoft. Implementation details are described in [NDC PM], also
from Microsoft.

However, at the time of this writing, not all system and LAN adapter combinations are capable
of packet filtering. Therefore, at a minimum it is recommended that wake events be triggered
by the reception of a Magic Packet as an alternative means for waking the system. For
information on where this technology is described, see Chapter 11 of this document.

When using a modem as the communications interface, waking the system whenever an
incoming call is detected (“wake on ring”) is sufficient.

Once a remote wakeup event is detected through packet filtering, Magic Packet or wake on
ring, the system resumes its previous Working state and is available for remote management.
This may also be accomplished by rebooting the system from its low-power state; however,
resuming is the preferred approach. For hardware implementations that don’t support a
transition from the system’s current low-power state to its full-power state while preserving
context, rebooting is the only viable solution.

For the purposes of this Baseline, when a system is resumed for remote management, it is
required that it be in a state such that it is available for service and management from the
network. This system state has the following characteristics:

n The platform’s power state is full ON (Working).

n Peripherals, such as the monitor, that are attached to the platform but are not required
for the external management activity, need not be fully powered.

n All management interfaces provided by the loaded environment are available.

Wired for Management Baseline Page 18

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

3.4 Considerations

This section discusses special considerations for implementing power management and remote
wakeup in particular environments addressed by this Baseline.

3.4.1 OS-Absent Environment

Although Baseline platforms are capable of being power-managed independent of the loaded
operating system, it is not required that a platform actually enter a reduced-power state in the
absence of an operating system. If, however, the platform does enter such a state in the
absence of an operating system, it must be capable of being awakened by a communications
event. When awakened in this manner, all the management interfaces that would normally be
present in an OS-absent environment must be available for use.

3.4.2 Desktop Platforms

It is required that desktop systems be ACPI-compliant, and that they respond to remote
wakeup events over the LAN for off-hours management. Therefore, off-hours power settings
should select the lowest possible power state that supports Remote Wake-up.

3.4.3 Mobile Platforms

It is the nature of mobile systems to be power-managed. It is recommended that they also be
capable of being awakened by a communications event if they are connected to a
communications link. However, a mobile system may not have either a LAN Adapter or
modem available for use. Additionally, the policy for the system may be that such
communications peripherals are not powered sufficiently during a power-reduced state,
especially when the system is battery powered, to recognize a communications event.

It is acceptable for a manufacturer’s implementation of remote wakeup to require that the
notebook be on AC power. The decision to require a connection to AC power while waiting for
a remote wakeup signal is the manufacturer’s choice. Such a restriction is allowed but not
required by the WfM Baseline.

3.4.4 Server Platforms

Note: ACPI compliance is not required for servers when they are executing operating systems
from vendors other than Microsoft.

The Hardware Design Guide Version 1.0 (or later) for Microsoft Windows NT Server [HDG]
establishes requirements for vendors who build server systems, expansion cards, and peripheral
devices that use the Microsoft Windows NT Server operating system. The [HDG] includes
detailed requirements on how ACPI must be implemented on server systems. In the [HDG],
three classes of servers are defined, and ACPI requirements vary by class of server. All Wired
for Management servers must comply with the basic server Configuration and Power
Management requirements. In addition, Small Office/Home Office (SOHO) and Enterprise
servers must conform to the additional requirements associated with configuration and power
management for these classes of servers, as defined in the HDG Version 1.0 or later.

Specification of a desired Idle Mode for servers is complicated by the potential complexity of
server configurations and the nature of the client-server computing paradigm. Servers,

Wired for Management Baseline Page 19

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

especially departmental and enterprise class servers, may take significantly longer than clients
to restore both hardware and applications to the Working state. The selection of an ACPI sleep
state for any specific server is determined by the latencies that can be tolerated by the software
running on its clients; the server must wake up and respond to the client’s request before the
client times out and assumes the server is out-of-service. This latency tolerance varies widely
among client-server applications and middleware. When packet filtering is used to implement
remote wakeup, application-specific latencies must be taken into account by the OS power-
management policies before transitioning the server from the Working state to one of the
several sleep or Soft-Off states. Because Magic Packet is not a general purpose solution to
remote wakeup, the management application who send Magic Packets can be tailored to
tolerate longer latencies when trying to manage servers. In the S0 (Working) state it is still
possible to achieve power savings by powering off individual devices. Therefore, the desired
Idle Mode for servers can be any of the sleep states (S1-S4) plus S0.

3.5 Summary of Platform Requirements

Table 3-1 Power Management Requirements Summary

Ref # Area Desktop Mobile Server

pm01 ACPI-compliant Required Required Required as
defined in
[HDG]

pm02 Recommended Sleep
Mode

S3 S3 S1

pm03 Remote Wakeup Required Recommended Recommended

pm04 Magic Packet Required Recommended Recommended

pm05 Packet Filtering Recommended Recommended Recommended

pm06 Wake On Ring Recommended Recommended Recommended

pm07 Bus Power Management Required Required Recommended

Wired for Management Baseline Page 20

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

4. Instrumentation Requirements

Instrumentation is a common methodology and syntax for defining the management features
and capabilities of all hardware, software, and attached peripherals of desktop, mobile and
server platforms. Instrumentation allows management applications to view and alter the state
of a managed platform and to monitor (be notified of changes in) the state. Industry-standard
instrumentation makes it possible for any Baseline platform to be managed remotely by any
management application, regardless of the vendor or operating system.

To fulfill the promise of universally managed platforms, the WfM Baseline establishes
instrumentation requirements for the Desktop Management Interface [DMI], Simple Network
Management Protocol [SNMP], and Common Information Model [CIM] standards.

These requirements are established in three areas for:

1. Instrumentation Code. Platform specific and OS specific software that provides the
management data and events.

2. Management Data and Events. The set of data and events used to describe and manage
management components. This Baseline defines a minimum set of management data.

3. Management Framework and Agents. Provides means for management applications to
access the management data and for instrumentation to make the management data
available.

4.1 Requirements

The following enumerates the Baseline instrumentation requirements. As discussed in the
Baseline Instrumentation section that follows, this Baseline takes into account a variety of
instrumentation strategies. The list below enumerates the requirements for current platforms.
Refer to the Desktop, Mobile, and Server Checklists for how these requirements apply to each
platform type.

1. Management Framework (DMI Version 2.0 Service Provider, SNMP Agent or
WBEM Framework) Installed and Active. The DMI Version 2.0 Service Provider must
be installed and active to access DMI instrumentation. Similarly, an SNMP Agent may be
required. For Microsoft Windows NT 5.0, Windows 98 and some later versions of NT4.0
and Windows 95 systems, the WBEM framework based on the CIM Schema is available
for management. If multiple Management Frameworks are installed and active, at least one
of the frameworks must support all of the instrumentation requirements defined in this
chapter relevant to the supported framework; that is, a complete Wired for Management
2.0 instrumentation stack as defined in Section 4.3, 4.4, or 4.5 must be available within a
single framework.

2. Local (to the Platform) and Remote Access to Management Data Provided via
Standard Access Mechanisms. Platform management is a mix of local and remote

Wired for Management Baseline Page 21

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

monitoring, reporting, and control. Capabilities must exist for either local (to the platform)
or remote management applications to access and modify management data, via standard
and well-defined access mechanisms specific to the Management Framework which is
installed and active. For example, for DMI, the local access mechanisms are standard
APIs, while remote access is via RPC (Remote Procedure Calls).

3. Events Generated according to Standard Models (DMI Events, SNMP Traps or
WBEM/CIM Events). Platforms are recommended to be able to generate management
events under the appropriate circumstances. Such events must conform to the DMI Event,
SNMP Trap, or WBEM/CIM Models, as appropriate to the Management Framework
which is installed and active.

4. DMI Events Conform to DMI Event Model. If DMI events are generated, these events
must conform to the DMI event model.

5. WBEM Events Conform to the CIM Event Model. (Future) WBEM events can be
generated and filtered for Microsoft Windows systems, where the WBEM Framework is
installed. These events report changes in the CIM Schemathe creation, deletion or
modification of classes and properties. In the future, CIM will define standard event
classes, similar to (and extending) the DMI Event Groups.

6. SNMP Traps conform to DMTF SNMP to DMI Mapping Standard [SNMP to
DMI]. If the instrumentation generates SNMP traps corresponding to the event generation
groups in the required management data, the traps must conform to the event-to-trap
mapping methodology described in [SNMP to DMI] (see platform checklists). Vendors
supporting legacy SNMP instrumentation stacks are not required to meet this requirement
provided they support an alternative WFM 2.0 Management Framework (CIM or DMI).

7. Instrumentation Supports Dynamic Devices. If a device is present and instrumented,
its instrumentation must be available. In other words, the platform instrumentation
implementation must account for peripherals that may be dynamically attached and
removed.

8. Instrumentation Deployed and Maintained with Product and Platform. The
instrumentation must be deployed with a product and the platform. As maintenance and
Field Replaceable Units (FRUs) are applied to the products and platform, the
instrumentation must be kept current with the configuration and capabilities of the system
and its devices. It is recommended that CIM-based instrumentation be provided on
platforms and operating systems that support it. Instrumentation is expected to be provided
by the platform vendor where the instrumentation applies to the platform, and by the add-
in adapter or peripheral vendor for their products.

9. Management Data Available. The management data defined by the appropriate
platform checklist must be available.

10. Backward Compatibility with the WfM 1.1 Standard for Data and Events. As the
managed environment adopts new standards, such as CIM, it is required that existing
applications continue to function until they can be migrated or upgraded. For this purpose,
it is required that management data be visible as specified in the WfM 1.1 Specification
(data visible via DMI in the Desktop and Mobile environments, and via DMI or SNMP in
the Server environment). One mechanism for achieving this requirement is the use of

Wired for Management Baseline Page 22

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

“cross-mappers”. Refer to Section 4.6 for more specific information on cross-mappers
between DMI and WBEM/CIM.

4.2 General Instrumentation Requirements

The Baseline does not define how instrumentation is implemented beneath the required
interfaces or what sources or methods are used to extract management information from the
platform. The Baseline also does not prohibit vendors of platforms or platform components
from extending the manageability of the platform by instrumenting additional management data
or features.

The specific requirements for instrumentation are based on platform type and are defined in the
Desktop, Mobile, and Server Checklists. These checklists contain the platform specific
requirements and the baseline management data that must be instrumented and deployed on
Baseline platforms.

4.2.1 Management Data

To ensure a baseline of functionality for management applications, a guaranteed minimum set
of management data is required. This data is defined in terms of DMTF groups, SNMP OIDs
(Object Identifiers), and CIM objects. The specific requirements for management data are
based on platform type and are defined in the Desktop, Mobile, and Server Checklists.

4.2.2 Dynamic Devices

This Baseline requires that instrumentation support devices that can be inserted and removed
(for example, PC Card, USB, hot swap drives, 1394). Upon such insertion or removal,
instrumentation must represent the associated management data for the devices. The
appropriate data must be inserted or removed from the management data store and/or
framework.

4.2.3 Deployment

The management framework, agents, instrumentation, and associated drivers are platform- and
OS-dependent. They must be deployed by the platform vendor along with the platform or its
operating system and made active when the operating system is booted. This enables any
management application to access and manage the platform via its instrumentation as soon as
the platform is up and running.

4.3 Desktop Management Interface (DMI)

4.3.1 Management Data

The Desktop, Mobile, and Server Checklists contain the standard DMTF groups that must be
instrumented and deployed on Baseline platforms. These requirements are consistent with the
Desktop Management Interface (DMI) 2.0 Conformance Guidelines, Version 1.0 [DMI
Conform].

Wired for Management Baseline Page 23

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

DMTF groups are versioned. By design, each new version of a given DMI group is backward
compatible. This Baseline requires the specified required group, or a later DMTF approved
version of the specified group be implemented. These groups, as defined in the platform
Checklists, provide the basic set of data for managing WfM Baseline machines.

4.3.2 Management Agent

The Management Agent required for DMI support in this Baseline is the DMI Version 2.00
Service Provider, as specified in [DMI]. A Baseline platform supporting DMI must deploy a
DMI Version 2.00 Service Provider and have it active when the operating system boots. This
enables management applications to access and manage the platform via its instrumentation as
soon as the platform is up and running.

The Service Provider implementation is OS-dependent. The Service Provider can be deployed
by the operating system vendor as part of the operating system or by the platform vendor as a
separate software component installed in conjunction with the operating system.

4.3.3 Instrumentation Code

This Baseline requires that platforms provide instrumentation that delivers the management
data identified in the appropriate platform checklist. If the instrumentation is DMI-based
instrumentation, it must utilize the CI interface provided by the DMI v2.00 Service Provider.

Hardware and software vendors, if implementing DMI, are strongly encouraged to implement
to the procedural CI defined in [DMI]. See the [DMI Conform] regarding backwards
compatibility for existing instrumentation implemented using the DMI Version 1.x block
interface.

4.3.4 Events

Some of the standard DMI groups listed in the platform checklists are associated with event
generation groups. Event generation for these groups is optional. However, if the
instrumentation generates events associated with a required group, event generation must be
compliant with the event model specification defined by [DMI].

4.3.5 Guide to DMI Instrumentation Development

The DMTF supplies a set of guidelines to help hardware and software vendors of add
instrumentation to their products. Desktop Management Task Force: Enabling your product
for manageability with MIF files, Revision 1.0 [MIF Guidelines] is available from the DMTF.

4.3.6 Local and Remote Access

The required DMI local access mechanisms are standard APIs, as specified in [DMI]. Remote
access is via RPC (Remote Procedure Calls) are also defined in that Specification.

Wired for Management Baseline Page 24

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

4.4 Simple Network Management Protocol (SNMP)

4.4.1 Management Data

The same set of management data, defined in the form of DMTF standard groups in the
platform checklists, is required when delivered through SNMP. Refer to Attachment C, WfM
DMI Mapping to CIM and SNMP, for information on the mappings between these standards.
To ensure a consistent MIB representation of the management data, this Baseline requires the
data to be represented as a set of SNMP Object Identifiers (OIDs) as defined by the [SNMP to
DMI] standard, available from the DMTF. This mapping provides a consistent representation
of the MIF data in the SNMP namespace. Only those groups required by the relevant platform
checklist must be supported in the SNMP namespace.

4.4.2 Management Agent

If SNMP support is provided on the managed platform, an SNMP v1 (or later) Agent must be
loaded and active when the operating system boots. This enables any management application
to access and manage the platform via its instrumentation as soon as the platform is up and
running.

The SNMP Agent implementation is OS-dependent. The SNMP Agent can be deployed by the
operating system vendor as part of the operating system or by the platform vendor as a
separate software component installed in conjunction with the operating system.

4.4.3 Instrumentation Code

This Baseline requires that platforms provide instrumentation that delivers the management
data identified in the appropriate platform checklist.

There is no requirement for platforms that export management data via SNMP to implement
native SNMP instrumentation. For example, instrumentation may be DMI-based with
appropriate SNMP mappings, for use by SNMP applications.

If the instrumentation is SNMP-based, instrumentation code for SNMP extension agents is
specific to the OS-specific SNMP Agent. Refer to the appropriate documentation included with
the SNMP Agent for information on developing the instrumentation to deliver the required
management data.

4.4.4 Traps

Some of the standard DMI groups listed in the platform checklists are associated with event
generation groups. Event or trap generation for these groups is optional. If the instrumentation
generates SNMP traps corresponding to the event generation groups in the required
management data, the traps must conform to the event-to-trap mapping methodology described
in [SNMP to DMI] standard.

4.4.5 Local and Remote Access

The required SNMP access mechanisms are defined by the IETF for SNMP v1 or later,
primarily in RFCs 1157, 1592, 1905, and 2272.

Wired for Management Baseline Page 25

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

4.5 Common Information Model (CIM)

CIM is an object-oriented schema for management which the industry is standardizing through
the efforts of the DMTF. Object Managers using CIM will be designed with the ability to
integrate and publish management data through a number of instrumentation means such as the
DMI, SNMP, and others.

One of the first implementations and uses of CIM will be the Microsoft WBEM Framework,
available for Windows 98, NT 5.0, and some later versions of NT 4.0 and Windows 95. This
section addresses both the CIM Schema and the Microsoft WBEM Framework, since an
implementation is needed to realize the CIM information model.

4.5.1 Management Data

The same set of management data, defined in the form of DMI standard groups in the platform
checklists, is required when delivered through a CIM data repository. Refer to Attachment C,
WfM DMI Mapping to CIM and SNMP, for information on the mappings between these
standards.

4.5.2 Management Framework

The WBEM Management Framework uses a three-tiered approach for collecting and providing
management data. This approach consists of:

n A single API through which all management information can be accessed.

n An information schema based on CIM and extended through Win32 classes.

n A provider architecture which allows population of the information model from the
underlying instrumentation.

A WBEM/CIM implementation is OS-dependent. The Microsoft implementation of WBEM is
deployed with its operating systems. Other vendors can choose to deploy a CIM object
manager as part of an operating system or as a separate software component installed in
conjunction with the operating system.

4.5.3 Instrumentation Code

This Baseline requires that platforms provide instrumentation that delivers the management
data identified in the appropriate platform checklist. Within the Microsoft WBEM Framework,
data from various instrumentation sources (supporting DMI, SNMP, WMI, and other sources)
are supplied through “Providers” to the CIM data repository. Several standard Providers are
available to input Registry, Event Log, SMBIOS, WMI, DMI, and other data to the CIM
information model.

4.5.4 Events

Some of the standard DMI groups listed in the platform checklists are associated with event
generation groups. Event generation for these groups is optional.

WBEM events can be generated and filtered for Microsoft Windows systems, where the
WBEM Framework is installed. These events report changes in the CIM Schema – the

Wired for Management Baseline Page 26

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

creation, deletion or modification of classes and properties. Model changes can be the direct
result of hardware errors and other events detected by drivers or instrumentation code. In the
future, CIM will define standard event classes, similar to (and extending) the DMI Event
groups.

4.5.5 Local and Remote Access

The local and remote access mechanisms for WBEM/CIM for Microsoft Windows NT 5.0 and
Windows 98 environments are defined in the Microsoft online documentation, in particular, the
WBEM SDK. In the future, the DMTF may address the definition of a secure wire protocol,
standard methods and queries, and APIs to extend the CIM standard.

4.6 Cross-Mapping Strategies

Instrumentation or management applications may need to provide data, or access data, across
multiple standards (DMI, SNMP, or CIM). In these cases, “cross-mappers” are recommended
to be installed and active. A cross-mapper is code that allows management data to be visible
through a variety of management technologies and standards, regardless of the source or
destination of that data.

One scenario where mappers are important is to smooth the transition to future object
managers based on CIM. Cross-Mappers allow existing management applications to use the
data available from CIM-based Object Managers, as well as allow new CIM-based
applications to manage existing WfM machines, thus preserving existing investments. This is
shown in the diagram below:

Data and
Schema

Data and
SchemaCIM Based Object

Manager

Object Providers
Component

Instrumentation

DMI Service Provider

DMI
Provider

CIM
Provider

HW AppsOSHWAppsOS

DMI
Apps

CIM based
Apps

- WfM 2.0 instrumentation components

- CIM instrumentation components

- Cross-mapping providers

Figure 4-1 DMI/WBEM Cross-Mapping Architecture

For this diagram, the following definitions apply:

Wired for Management Baseline Page 27

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

n DMI SP. The DMI Service Provider is a software component which supports the
DMTF’s DMI 2.0 management API. This API allows for both local and remote
management of the platform.

n DMI Adapter. The DMI Adapter allows data provided by the WBEM Framework to
be accessible through the DMI Service Provider. The adapter requires mapping
collections, called group views and component views to expose the CIM data. The
required WfM baseline group views for the desktop, mobile, and server platforms are
included with the adapter infrastructure.

n DMI Provider. The DMI Provider allows data provided by the DMI infrastructure to
be accessible through the WBEM Framework.

4.7 Considerations

This section discusses special considerations for implementing instrumentation in some
particular environments addressed by this Baseline.

4.7.1 OS-Absent Environment

The OS-Absent section of the Baseline describes the requirements for a Baseline platform’s
support of [SMBIOS]. SMBIOS extends the platform BIOS to support retrieval of
management data required in the Desktop, Mobile, and Server checklists.

4.7.2 Desktop Platforms

None.

4.7.3 Mobile Platforms

It is highly recommended that the client-side management application or agent queue events
when disconnected for later forwarding upon reconnection.

4.7.4 Server Platforms

None.

Wired for Management Baseline Page 28

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

4.8 Summary of Platform Requirements

Table 4-1 Instrumentation Requirements Summary

Ref # Area Desktop Mobile Server

in01 Management Framework
(DMI Version 2.0 Service
Provider, SNMP Agent or
WBEM Framework)
Installed and Active

Required (Either
DMI, WBEM or
SNMP)

Required (Either
DMI, WBEM or
SNMP)

Required (Either
DMI, WBEM or
SNMP)

in02 Local and Remote Access
to Management Data via
Standard Access
Mechanisms

Required Required Required

in03 Events Generated
according to Standard
Models (DMI, SNMP or
WBEM/CIM)

Recommended Recommended Recommended

in04 DMI Events conform to
DMI Event Model

Required if DMI
Events
Implemented

Required if DMI
Events
Implemented

Required if DMI
Events
Implemented

in05 WBEM Events Conform
to CIM Event Model

Future Future Future

in06 SNMP Traps conform to
“DMTF SNMP to DMI
Mapping Standard”.

Required if
SNMP
Framework
Implemented

Required if
SNMP
Framework
Implemented

Required if
SNMP
Framework
Implemented

in07 Instrumentation Supports
Dynamic Devices

Required Required Required

in08 Instrumentation Deployed
and Maintained with
Product and Platform

Required - CIM
Recommended
Where Supported
by Platform/OS

Required - CIM
Recommended
Where Supported
by Platform/OS

Required - CIM
Recommended
Where Supported
by Platform/OS

in09 Management Data
Available

Required (per
Desktop
Checklist) – CIM
Recommended
Where Supported

Required (per
Mobile Checklist)
– CIM
Recommended
Where Supported

Required (per
Server Checklist)
– CIM
Recommended
Where Supported

in10 Backward Compatibility
with the WfM 1.1
Standard for Data and
Events

Required – Data
and Events
Visible via DMI

Required – Data
and Events
Visible via DMI

Required – Data
and Events
Visible via DMI

Wired for Management Baseline Page 29

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

5. Platform Firmware

This chapter contains interface specifications for capabilities to be implemented by the
platform firmware. Most of these capabilities relate to OS-absent operation of the platform,
that is, operation when no OS image is resident on the platform or when a fault (for example,
hard drive failure) prevents a resident OS image from booting. The capabilities addressed in
this version of the Baseline include:

n A protocol and interfaces that enable a platform to locate, download from a server, and
execute a bootable image appropriate to the platform's current state. These protocol and
interface specifications are referred to here as the “Preboot Execution Environment”
(PXE) and were previously documented as “Appendix B” of the Network PC System
Design Guidelines.

n A well-known interface (SMBIOS) for access to platform data, plus a minimum set of
data required to be available through this interface.

n The interface to a mechanism for disabling input devices such as keyboard and mouse
during a remote boot operation.

n A format for network messages indicating exceptional events sent by the platform
firmware to a management server.

n A Platform Event Trap format for communicating platform events occurring in the OS-
absent interval to a remote management application.

5.1 Requirements

The following enumerate the platform firmware requirements:

1. Preboot Execution Environment. For platforms that have a LAN adapter on the
motherboard or a LAN adapter card with an option ROM, the platform must implement
the Preboot Execution Environment v2.0 (PXE) client specifications.

2. SMBIOS 2.2 or later The platform must implement SMBIOS version 2.2 or later.

3. System boot status. Platform makes available the reason for the current system boot.

4. Remote lockout. If access to the platform via some hardware (for example, keyboard)
may be locked out locally, the platform also allows the hardware to be locked via the
described software interface.

5. Platform Event Trap. Platform supports SNMP traps which meet the Platform Event
Trap format specification.

6. Boot Integrity Services. The platform implements the interface specified in Boot
Integrity Services Application Programming Interface, v1.0.

Wired for Management Baseline Page 30

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

7. System Network Boot Control. The platform makes available the user-controllable
network-boot enable status.

5.2 Preboot Execution Environment (PXE)

5.2.1 Overview

5.2.1.1 Purpose

PXE can enable any of several functions, depending on what the downloaded image does.
Examples include installing an OS on the client system, running diagnostics on the client
system, and updating firmware on the client system. The choice of image to download is
ultimately up to the server, but can be influenced by information conveyed by the client in its
request.

Interoperability

Interoperability of PXE requires two sets of agreements:

n Between the client and the server as to the protocol used to request and download the
bootable image.

n Between the downloaded image and the client as to the environment that exists on the
client when the downloaded image begins executing.

The remainder of this section gives an overview of specifications for each of these.

5.2.1.2 Preboot Execution Environment (PXE) Protocol Overview

The PXE protocol is based on the Dynamic Host Configuration Protocol (DHCP), an IETF
standard protocol by which clients can request configuration parameter values, and a bootable
image from a server. Standard DHCP operates as follows (a highly abstracted description):

n The client broadcasts a request message. This message implicitly requests values for
certain critical network-communications-related parameters and may explicitly request
other values. Whether the client is requesting a bootable image is ambiguous.

n One or more servers respond to the client with configuration parameter values, and
possibly, the filename of a bootable image. Generally, another message exchange occurs
at this point to confirm the IP address allocated to the client.

n If the client wanted a bootable image and the server supplied the name of one, the client
uses the Trivial File Transfer Protocol (TFTP) to download the image.

The PXE protocol is distinguished from standard DHCP principally by:

n The requirement of additional information (in the form of DHCP options) in the
messages passed between the client and the server, including tags positively identifying
the messages as originating from PXE clients and servers.

n The implicit assumption that the client does need a bootable image.

n The option that the downloaded image has a corresponding digital signature in order to
allow detection of corruption or tampering.

Wired for Management Baseline Page 31

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

The not-yet-standardized DHCP options that are either required or permitted in PXE messages
convey the following types of information:

n Client hardware characteristics

n Client request for a bootable image

n Client request for a corresponding digital signature

5.2.1.3 Preboot Execution Environment (PXE) Overview

The PXE specification comprises a memory configuration plus a number of APIs to which the
downloaded image must have access. These APIs provide network communication services.

A Modular PXE implementation provides for the storage of support drivers in nonvolatile
storage and the subsequent retrieval to and execution from the Preboot Code and Data Space
defined by [PXE].

5.2.2 PXE Client Specifications

A PXE client must be able to do all of the following as an alternative to booting from a local
device.

n Request a bootable image using the PXE protocol. The platform’s implementation of
this protocol must comply with the client behavior specified in [PXE]. The client must
be capable of retrieving the digital signature corresponding to the boot image; the use of
this capability may be configurable.

n Download the bootable image using TFTP.

n Use the boot image’s digital signature to differentiate between valid and invalid boot
images, and avoid executing invalid ones.

n Initiate execution of the image in an environment that complies with the PXE memory
map and PXE APIs as specified in [PXE].

A modular implementation of PXE must support all of the following:

n Support the PXE Client Specifications defined above.

n Execute the PXE BUS Driver Architecture allowing preboot support drivers to be stored
and retrieved from nonvolatile storage and subsequently executed from Preboot Code
and Data Space (see [PXE]).

5.2.3 Deployment Considerations

5.2.3.1 Configuration Servers

For clients to receive digital signatures for boot images, each PXE server must be supplied
with either the digital signatures, or the key pair needed to create them.

5.2.3.2 Clients

To be able to validate downloaded boot images, each client must implement [BIS] and be
configured with one or more trusted public keys.

Wired for Management Baseline Page 32

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

5.2.4 Remote Lockout Considerations

5.2.4.1 Downloaded Executables

Downloaded executables may require that the user be “locked out” or inhibited from
interfacing with the PXE client during sensitive operations, such as BIOS flash updates.
Interface operations that need to be inhibited include on/off button press, reset button press,
mouse movement, and key press.

5.2.4.2 Client

The System BIOS of PXE clients shall provide functionality to allow downloaded executables
to lock out user interface functionality. INT 15 functions shall be provided to get and set the
remote lock out settings.

5.2.4.3 Int 15h Get Remote Lockout settings

CX contains the current lockout settings as indicated below. An unsupported modification of a
particular setting is indicated by attempting setting the appropriate bit in CX and noting via a
read of that register that the setting is unchanged.

Enter:
AX := 2501h
Int 15h

Exit:
CF == 1 || AH != 0 Failure. This function not supported by the

BIOS.

CF == 0 && AH == 0 Success. Lockout(s) exist as follows:
(CX & 01h) == 1 Hard On/Off switch press.
(CX & 02h) == 2 Soft On/Off button press.
(CX & 04h) == 4 Reset button press.
(CX & 08h) == 8 Mouse movement.
(CX & 10h) == 10h Ctl-Alt-Del key sequence press.
(CX & 20h) == 20h Any key press.

Upper two bits of CX are reserved.All other register contents must be
preserved.

5.2.4.4 Int 15h Set Remote Lockout settings

Any lockout settings set through this interface are not persistent across power cycles and
reboots.

Enter:
AX := 2502h
(CX & 01h) == 1 Lock out hard On/Off switch press.
(CX & 02h) == 2 Lock out Soft On/Off button press.
(CX & 04h) == 4 Lock out Reset button press.
(CX & 08h) == 8 Lock out Mouse movement.
(CX & 10h) == 10h Lock out Ctl-Alt-Del key sequence press.
(CX & 20h) == 20h Lock out all key press.

Upper two bits of CX are reserved.

Int 15h
Exit:
CF == 1 || AH != 0 Failure. This function not supported by the

BIOS or could not be set.

CF == 0 && AH == 0 Success. Remote Lockout(s) set successfully.
All other register contents must be preserved.

Wired for Management Baseline Page 33

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

5.3 SMBIOS Data and Standard Access to Platform Data

Some of the management data that managed systems must export, as required in the
Instrumentation (Chapter 4) and the platform-specific checklists (Chapters7-9) of this
Baseline, is only detectable by the platform BIOS during the preboot state. The System
Management BIOS Reference Specification allows the BIOS to export critical management
data in a standard table format. These tables allow instrumentation software running on the
system in the post-boot state to retrieve the management data.

The platform BIOS must comply with [SMBIOS].

5.3.1 SMBIOS Data

The following table enumerates the required SMBIOS structures and the required minimum
field content within each of those structures.

Structure Name and Type Required? Data Requirements

BIOS Information (Type 0) Required One and only one structure is present in the structure-table.
BIOS Version and BIOS Release Date strings are non-null;.
the date field uses a 4-digit year (for example, 1999). All
other fields reflect full BIOS support information.

System Information (Type 1) Required Manufacturer and Product Name strings are non-null. UUID
field identifies the system’s non-zero UUID value. Wake-up
Type field identifies the wake-up source and cannot be
Unknown.

System Enclosure (Type 3) Required Manufacturer string is non-null; the Type field identifies the
type of enclosure (Unknown is disallowed).

Processor Information (Type 4) Required One structure is required for each system processor. The
presence of two structures with the Processor Type field set
to Central Processor, for instance, identifies that the system
is capable of dual-processor operations.
Socket Designation string is non-null. Processor Type, Max
Speed, and Processor Upgrade fields are all set to “known”
values — in other words, the Unknown value is disallowed
for each field.
If the associated processor is present (i.e. the CPU Socket
Populated sub-field of the Status field indicates that the
socket is populated), the Processor Manufacturer string is
non-null and the Processor Family, Current Speed, and
CPU Status sub-field of the Status field are all set to
“known” values.
Each of the Lx Cache Handle fields is either set to 0xFFFF
(no further cache description) or reference a valid Cache
Information Structure.

Cache Information (Type 7) Required One structure is required for each external-to-the-processor
cache.
Socket Designation string is non-null if the cache is external
to the processor. If the cache is present (i.e. the Installed
Size is non-zero), the Cache Configuration field is set to a
“known” value — in other words, the Unknown value is
disallowed.

Wired for Management Baseline Page 34

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Structure Name and Type Required? Data Requirements

System Slots (Type 9) Required One structure is required for each upgradeable system slot. A
structure is not required if the slot must be populated for
proper system operation (for example, the system contains a
single memory-card slot).
Slot Designation string is non-null. Slot Type, Slot Data Bus
Width, Slot ID, and Slot Characteristics 1 & 2 are all set to
“known” values.
If device presence is detectable within the slot (for example,
PCI), the Current Usage field must be set to either Available
or In-use. Otherwise (for example, ISA), the Unknown value
for the field is also allowed.

Physical Memory Array (Type
16)

Required One structure is required for the system memory.
Location, Use, Memory Error Correction, and Maximum
Capacity are all set to “known” values. Number of Memory
Devices is non-zero and identifies the number of Memory
Device structures that are associated with this Physical
Memory Array.

Memory Device (Type 17) Required One structure is required for each socketed system-memory
device, whether or not the socket is currently populated; if
the system includes soldered system-memory, one additional
structure is required to identify that memory device.
Device Locator string is set to a non-null value. Memory
Array Handle contains the handle associated with the
Physical Memory Array structure to which this device
belongs. Data Width, Size, Form Factor, and Device Set are
all set to “known” values. If the device is present (i.e. Size is
non-zero), the Total Width field is not set to 0xFFFF
(Unknown).

Memory Array Mapped Address
(Type 19)

Required One structure is required for each contiguous block of
memory addresses mapped to a Physical Memory Array.
Ending Address is larger than Starting Address. Each
structure’s address range is unique and non-overlapping.
Memory Array Handle references a Physical Memory Array
structure. Partition Width is non-zero.

Memory Device Mapped
Address (Type 20)

Required Sufficient structures are required to map all enabled memory
devices to their respective memory-array mapped addresses.
Ending Address is larger than Starting Address. Memory
Device Handle references a Memory Device structure.
Memory Mapped Address Handle references a Memory
Array Mapped Address structure. Partition Row Position is
neither 0 nor 0xFF, nor is it greater than the Partition Width
of the referenced Memory Array Mapped Address structure.
Interleave Position and Interleaved Data Depth are not set
to 0xFF (Unknown).

Boot Integrity Services Entry
Point (Type 31)

Required, if
BIS is
supported by
the platform

Both 16-bit real-mode and 32-bit flat protected-mode entry
points are non-zero. The overall structure checksum
evaluates to 0.

System Boot Information (Type
32)

Required The structure’s length is at least 0x0B, i.e. at least one byte
of System Boot Status is provided.

Wired for Management Baseline Page 35

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

5.3.2 System Boot Information

5.3.2.1 Identifying the System Boot Status

The client system firmware, for example, BIOS, communicates the System Boot Status to the
client’s PXE boot image or OS-present management application via a System Management
BIOS (SMBIOS) structure. When used in the PXE environment, for example, this code
identifies the reason the PXE was initiated and can be used by boot-image software to further
automate an enterprise’s PXE sessions. For example, an enterprise could choose to
automatically download a hardware-diagnostic image to a client whose reason code indicated
either a firmware- or operating system-detected hardware failure.

Note: Within the following section, “this specification” refers to the [SMBIOS] specification.

Offset Name Length Value Description

00h Type BYTE 32 System Boot Information structure identifier

01h Length BYTE Varies Length of the structure, in bytes.

02h Handle WORD Varies

04h Reserved 6 BYTEs 00h Reserved for future assignment via this
specification; all bytes are set to 00h.

05h Reason Code
Data

Length–
10 Bytes

Varies The Status and Additional Data fields that
identify the system boot status. See System
Boot Status for additional information.

5.3.2.1.1 System Boot Status

Boot Status Name Status Additional Data

No errors detected 0 None

No bootable media 1 none

The “normal” operating system failed to load. 2 none

Firmware-detected hardware failure, including “unknown”
failure types.

3 none

Operating system-detected hardware failure. For ACPI
OS’s, the system firmware might set this reason code when
the OS reports a boot failure via interfaces defined in the
Simple Boot Flag Specification.

4 none

User-requested boot, usually via a keystroke 5 none

System security violation 6 none

Previously-requested image. This reason code allows a
coordination between OS-present software and the OS-
absent environment. For example, an OS-present
application might enable (via a platform-specific interface)
the system to boot to the PXE and request a specific boot-
image.

7 varies

A system watchdog timer expired, causing the system to
reboot.

8 none

Reserved for future assignment via this specification. 9-127 Varies

Wired for Management Baseline Page 36

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Boot Status Name Status Additional Data

Vendor/OEM-specific implementations. The Vendor/OEM
identifier is the “Manufacturer” string found in the SMBIOS
System Identification structure.

128-191 Varies

Product-specific implementations. The product identifier is
formed by the concatenation of the “Manufacturer” and
“Product Name” strings found in the SMBIOS System
Information structure.

192-255 Varies

5.3.3 System Network Boot Control

The client system firmware, e.g. BIOS, indicates whether or not the client system firmware
supports function key-initiated Network Service Boot via the System Management BIOS
(SMBIOS) BIOS Information structure.

When function key-initiated Network Service Boot is not supported by the client system
firmware, the network adapter option ROM may choose to offer this functionality on its own,
thus offering this capability to legacy systems. When the function is supported, (BIOS
Characteristic Extension Byte 2, bit 1 is set to 1), the network adapter option ROM shall not
offer this capability.

Offset Name Length Value Description

00h Type BYTE 0 BIOS Information Indicator

01h Length BYTE Varies 12h + number of BIOS Characteristics Extension Bytes. If no
Extension Bytes are used the Length will be 12h. For v2.1
and v2.2 implementations, the length is 13h since one
extension byte is defined. For v2.3 and later
implementations, the length is at least 14h since two
extension bytes are defined.

02h Handle WORD Varies

04h Vendor BYTE STRING String number of the BIOS Vendor’s Name

05h BIOS Version BYTE STRING String number of the BIOS Version. This is a free form string
which may contain Core and OEM version information.

06h BIOS Starting
Address
Segment

WORD Varies Segment location of BIOS starting address, e.g.0E800h.
Note: The size of the runtime BIOS image can be computed
by subtracting the Starting Address Segment from 10000h
and multiplying the result by 16.

08h BIOS Release
Date

BYTE STRING String number of the BIOS release date. The date string, if
supplied, is in either mm/dd/yy or mm/dd/yyyy format. If the
year portion of the string is two digits, the year is assumed to
be 19yy.

Note: The mm/dd/yyyy format is required for SMBIOS
version 2.3 and later.

09h BIOS ROM
Size

BYTE Varies
(n)

Size (n) where 64K * (n+1) is the size of the physical device
containing the BIOS, in bytes

0Ah BIOS
Characteristics

QWO
RD

Bit Field Defines which functions the BIOS supports.

PCI, PCMCIA, Flash, etc.

Wired for Management Baseline Page 37

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Offset Name Length Value Description

12h BIOS
Characteristics
Extension
Bytes

Zero or
more
BYTEs

Bit Field Optional space reserved for future supported functions. The
number of Extension Bytes that are present is indicated by
the Length in offset 1 minus 12h.

5.3.3.1 BIOS Characteristics Extension Byte 2

This information, available for SMBIOS version 2.3 and later, appears at offset 13h within the
BIOS Information structure.

Byte Bit Position Meaning if Set

Bit 0 BIOS Boot Specification supported

Bit 1 F12=Network Boot supported.

Bits 2:7 Reserved for future assignment via this specification.

5.4 OS-absent Security Infrastructure

It is recommended that the PXE-based boot process be able to verify the integrity and source
of the boot image that it downloads. Also, each subsequent bootstrap stage can benefit from
support for verifying the integrity and source of the items that it downloads. The [BIS]
document describes these usage models in more detail, and describes an interface that supports
them. It is recommended that platforms implement the interface specified in [BIS].

5.5 SNMP Traps

A common Platform Event Trap format for OS-absent, preboot, and boot failure events is
defined in The Platform Event Trap Format specification. A platform event is defined as one
that originates from platform firmware (BIOS, OS Bootstrap Loader) or platform hardware
(ASIC, chip set, or micro-controller) independent of the state of the operating system or
instrumentation software.

Platform event notification under OS-absent conditions requires a very simple event format and
a network protocol which can be generated by state machines of very limited complexity.
SNMP traps provide a low cost, well known method of achieving these goals. SNMP traps can
be handled by most existing management applications.

Systems which support OS-absent, preboot, or boot failure alerting should support the
Platform Event Trap. This enables management applications to receive asynchronous
notification of critical platform state changes which may prevent a system from booting and to
interpret them in a common fashion across Wired for Management platforms.

The OS or instrumentation software may also generate traps using this format, though it is
expected that runtime software will use standard events already defined in the SNMP, DMI, or
CIM management frameworks.

Wired for Management Baseline Page 38

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

5.6 Considerations

5.6.1 Desktop Platforms

None.

5.6.2 Mobile Platforms

On mobile platforms, the PXE client specifications is required only if the platform has built-in
LAN on the notebook platform or docking station. For mobile platforms without LAN down,
but which support LAN adapter cards (CardBus or NIC in docking station), implementation of
PXE client specifications is recommended.

Mobile manufacturers’ implementation mechanisms may require that the notebook be on AC
power for PXE to be enabled. The decision to require a connection to AC power for PXE to be
enabled is the manufacturer’s choice. Such a restriction is allowed but not required by the
WfM Baseline.

5.6.3 Server Platforms

It is strongly recommended that LAN adapter add-in cards used on servers implement option
ROMs which support the PXE. PXE as defined in this Baseline provides a standard
mechanism for loading alternative service environments (for example, OS patches and
diagnostics environments) which can be exploited to reduce the Mean Time to Repair, and
thereby increase the Reliability, Availability, and Serviceability of server systems.

Remote management is a high priority for server systems, since servers will typically be
isolated from local human user intervention (see Management Characteristics of Servers,
Section 9.2). This specification does not address technologies which enable automatic or
remote initiation of the PXE boot service. These capabilities may be addressed in future
versions of this specification. Server vendors are encouraged to implement mechanisms, such
as the expiration of watchdog timers, that allow the platform to automatically initiate the PXE
protocol when critical conditions warrant a remote preboot intervention. Using PXE and the
System Reboot Reason Codes, the managed server can request a variety of repair services
from the remote configuration server, based on the various critical conditions which can cause
the managed server to contact the configuration server.

Servers are also encouraged to implement mechanisms that allow the remote configuration
server or other remote management applications to force the server to initiate the PXE
protocol. The Platform Event Trap can be used to bring a critical server condition to the
attention of the remote application or system administrator. Mechanisms which remotely force
the server to initiate a remote boot via PXE should be sensitive to the current state of the
server, and should allow the OS to gracefully shutdown the server whenever possible, prior to
bringing the server up through BIOS to the point where the boot options can execute.

Wired for Management Baseline Page 39

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

5.7 Summary of Platform Requirements

Table 5-1 Platform Firmware Requirements Summary

Ref # Area Desktop Mobile Server

pf01 Preboot Execution
Environment

Required Required if LAN
on motherboard
present
Recommended if
LAN adapter
card present

Recommended

pf02 SMBIOS or later Required Required Required

pf03 System boot status Required Required Required

pf04 Remote lockout Required Required Required

pf05 Platform Event Traps Recommended Recommended Recommended

pf06 Boot Integrity Services Recommended Recommended Recommended

pf07 SMBIOS Data Required Required Required

pf08 System Network Boot
Control

Required Required Required

Wired for Management Baseline Page 40

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

6. Problem Resolution Requirements

The Problem Resolution Standards refer collectively to the Solution Exchange Standard V1.0
(SES), Service Incident Exchange Standard V1.0 (SIS), and MOF Addendum V1.0 [SES/SIS]
which are published jointly by the Desktop Management Taskforce (DMTF) and the Customer
Support Consortium (CSC). These standards describe the formats and transactions necessary
to exchange trouble tickets between SIS Service Requesters and SIS Service Providers, as well
as to exchange solution knowledge between content providers/publishers and knowledge
engines. For a complete definition of the standard trouble tickets and transactions, refer to
these documents.

A SIS Service Requester is any entity which is requesting service from an SIS Service Provider
(for example, help desk or management application). An SIS Service Requester can be the
platform originally experiencing the difficulty or a help desk which needs to escalate a problem
to another provider. This Baseline describes the trouble ticketing requirements for a platform
agent. The presence of such an agent on the platform allows that platform to participate in the
trouble ticket environment provided by a help desk or management application.

The [SES/SIS] standards derive much of their power by allowing automated, lossless
transportation of problem information from beginning (with the detection of the problem on the
platform) through intermediate providers to the return and activation of the solution to the
platform. However, this Baseline addresses only the requirements for the platform agent which
allow standard trouble tickets (incidents) to be generated. In particular, no requirements are
placed on help desks or management applications.

6.1 Requirements

The following enumerate the requirements on the platform trouble ticket agent:

1. Standard Trouble Ticket Agent Installed and Active. The trouble ticket agent should
be installed and available on the platform. The presence of this agent will guarantee that a
local management application has a compatible interface into the enterprise’s trouble ticket
environment. It also guarantees that a Baseline-enabled remote management application will
be able to receive and resolve trouble tickets from a Baseline platform.

 Note: Requirements 2 through 4 must be met only if the Trouble Ticket Agent is installed and
active on the platform.

2. SES Compliance Level 2. All SES objects within the trouble ticket must comply with
SES Level 2 definitions where they exist. The sole exception to this is the SOLUTION object
presented as an instance of a SERVICE INCIDENT RESOLUTION, which may be of any
compliance level.

3. Transaction Objects. For a given transaction, all of the SIS objects required by the
Service Incident Exchange Standard must be included.

Wired for Management Baseline Page 41

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

4. Required Transactions. All transactions defined by SIS must be supported.

5. Trouble Ticket Initiation. At a minimum, the user should be allowed to generate a
trouble ticket based on an observed problem. Additionally, the system may be able to
automatically generate a trouble ticket based on instrumented alarms or application errors.

6.2 Solution Exchange

A standard trouble ticket may contain several objects defined by the Solution Exchange
Standard, including PROBLEM, SOLUTION and CONTACT information. In general, all SES
objects in a trouble ticket must conform to the Level 2 compliance definitions. However, in the
case of an existing SOLUTION which is incorporated in a trouble ticket, as is, no compliance
requirements are made.

6.3 Service Incident Exchange Requirements

This Baseline does not require that a system generate standard trouble tickets based on
observed or monitored events. However, the potential cost reduction (by allowing automation
and accurate data transfer end-to-end) is great, and it is recommended that platforms in fact do
so. To allow the deployment of applications which implement automated problem resolution
widely into any management application or help desk, platforms must be equipped with a
standard trouble ticketing agent. This agent is not responsible for the initiation or resolution of
a trouble ticket. Rather, it ensures that the platform remotely supports the object definitions
and transactions described by [SES/SIS]. This agent must be able to:

n Present the problem, contact, contract, and activity information in the standard object
format.

n Receive solutions in the same format.

n Pose questions to an SIS Service Provider in the form of SIS transactions (for example,
Request Entitlement).

n Respond to a SIS Service Provider’s transactions (for example, Request Problem
Information, Provide Problem Resolution, Request Closure).

The system need not be capable of automatically activating the solution. Simply receiving it
(including the correct response transactions back to the SIS Service Provider) and presenting it
to the user is sufficient.

6.4 Considerations

This section describes environmental considerations when implementing standard trouble
tickets.

6.4.1 OS-absent Environment

Not applicable.

Wired for Management Baseline Page 42

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

6.4.2 Desktop Platforms

None.

6.4.3 Mobile Platforms

It is recommended that mobiles be able to generate standard trouble tickets. However, mobile
systems are not always connected, and trouble ticket transactions may need to be queued until
a connection is made. When the connection is made, the transactions must follow the normal
procedure with the SIS Service Providerin other words, transaction, followed by responding
transaction.

6.4.4 Server Platforms

Most applicable to servers is the automatic (versus user-initiated) trouble ticket generation
model. It is highly recommended that standard trouble tickets be generated by the trouble ticket
agent when a DMI indication or an SNMP trap which indicates serious or critical state
changes is reported by the instrumentation software.

6.5 Summary of Platform Requirements

Table 6-1 Problem Resolution Requirements Summary

Ref # Area Desktop Mobile Server

pr01 Standard Trouble Ticket
Agent Installed and Active

Recommended Recommended Recommended

pr02 SES Compliance Level 2 Required* Required* Required*

pr03 Transaction Objects Required* Required* Required*

pr04 Required Transactions Required* Required* Required*

pr05 Trouble Ticket Initiation Recommended Recommended Recommended

* = If pr01 is met on the platform

Wired for Management Baseline Page 43

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

7. Checklist: Desktop Platforms

Desktops cover the widest variety of any class of system. They constitute the “vast multitude”
in most computing environments.

A major trend for desktops is to adopt more and more of the features pioneered by servers and
mobile systems. In particular, desktops have increasing power and noise management
requirements with solutions that were only found on mobile platforms a few years ago. On the
other hand, it is probable that more desktops are used as servers than servers are used as
servers. Desktops, therefore, have the requirements for high availability and manageability that
are typically associated with servers. Desktops are the most price-sensitive class due to their
predominance in the market.

Desktops usually have the widest variety of peripherals attached since desktops are generally
adapted to the environment of those working on them. For example, graphics artists might
require graphics tablets while engineers may have instrumentation attachment requirements.

Desktops share with mobiles the lack of any commonly accepted back-up strategy. They are
easier to monitor and track than mobile systems but are portable enough to still have
substantial tracking issues. They are ubiquitous enough that many companies simply swap out
non-functioning systems rather than attempt to resolve issues.

Desktop offerings change more rapidly than servers so it is probable that most large networks
of desktops will be heterogeneous, even if all of the systems are purchased from the same
vendor.

Desktops have found the most favor in the home environment. Home and branch office (remote
site) manageability share much in common.

7.1 Detailed Requirements

The following table summarizes the WfM requirements on desktop systems.

Wired for Management Baseline Page 44

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Table 7-1 Desktop Requirements

Ref # Capability Required? Comments

in01 Management Framework (DMI Version
2.0 Service Provider, SNMP Agent or
WBEM Framework) Installed and
Active

Required Either DMI, WBEM
or SNMP

in02 Local and Remote Access to
Management Data via Standard
Access Mechanisms

Required

in03 Events Generated according to
Standard Models (DMI, SNMP or
WBEM/CIM)

Recommended

in04 DMI Events conform to DMI Event
Model

Required if DMI Events
Implemented

in05 WBEM Events Conform to CIM Event
Model

Future

in06 SNMP Traps conform to “DMTF SNMP
to DMI Mapping Standard”.

Required if SNMP Framework
implemented

in07 Instrumentation Supports Dynamic
Devices

Required

in08 Instrumentation Deployed and
maintained with Product and Platform

Required CIM Recommended
where supported by
platform/OS

in09 Management Data Available Required per Desktop
Checklist

in10 Backward Compatibility with the WfM
1.1 Standard for Data and Events

Required Data and Events
Visible via DMI

pf01 Preboot Execution Environment Required

pf02 SMBIOS 2.2 or later Required

pf03 System boot status Required

pf04 Remote lockout Required

pf05 Platform Event Traps Recommended

pf06 Boot Integrity Services Recommended

pf07 SMBIOS data Required

pf08 System Network Boot Control Required

pm01 ACPI-compliant Required

pm02 Recommended Sleep Mode S3

pm03 Remote Wakeup Required

Wired for Management Baseline Page 45

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Ref # Capability Required? Comments

pm04 Magic Packet Required

pm05 Packet Filtering Recommended

pm06 Wake On Ring Recommended

pm07 Bus Power Management Required

pr01 Standard Trouble Ticket Agent
Installed and Active

Recommended

pr02 SES Compliance Level 2 Required If pr01 is met on the
platform

pr03 Transaction Objects Required If pr01 is met on the
platform

pr04 Required Transactions Required If pr01 is met on the
platform

pr05 Trouble Ticket Initiation Recommended

The following two tables summarize the DMI MIF requirements for desktops. Table 7-2 lists
DMI groups required in all desktops; Table 7-3 lists DMI groups required for desktops in
some circumstances.

Table 7-2 DMI Group Requirements for Desktops

Group Required? Comments
DMTF|ComponentID|001 Required
DMTF|Processor|003 Required
DMTF|System Memory Settings|001 Required
DMTF|Motherboard|001 Required
DMTF|Keyboard|003 Required
DMTF|Pointing Device|001 Required See Note 3.
DMTF|Parallel Ports|003 Required
DMTF|Serial Ports|003 Required
DMTF|Disks|002 Required
DMTF|General Information|001 Required
DMTF|Memory Array Mapped Addresses|001 Required
DMTF|Memory Device Mapped Addresses|001 Required
DMTF|Physical Memory Array|001 Required
DMTF|Operating System|001 Required
DMTF|Physical Container Global Table|001 Required
DMTF|System BIOS|001 Required
DMTF|System Cache|002 Required
DMTF|System Slots|003 Required
DMTF|Video BIOS|001 Required
DMTF|Video|002 Required
DMTF|Network Adapter 802 Port|001 Required
DMTF|Network Adapter Driver|001 Required
DMTF|Memory Device|001 Required

Wired for Management Baseline Page 46

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Note 1: Group revision levels must be equal to or greater than those listed.

Note 2: ‘Legacy’ System Resource Management and Physical Memory Management groups (see
Tables 7-2 and 7-3 in version 1.1) no longer allowed.

Note 3: DMTF|Mouse|003 is replaced by DMTF|Pointing Device|001.

Note 4: The groups are identical to the ones required by the DMTF [DMI Conform].

Table 7-3 Additional DMI Group Requirements for Desktops

Group Required? Comments
DMTF|System Resources 2|001 Required See Note 5.
DMTF|System Resource Device Info|001 Required See Note 5.
DMTF|System Resource DMA Info|001 Required See Note 5.
DMTF|System Resource I/O Info|001 Required See Note 5.
DMTF|System Resource IRQ Info|001 Required See Note 5.
DMTF|System Resource Memory Info|001 Required See Note 5.
DMTF|Monitor Resolutions|002 Required See Note 6.

Note 5: These groups are optional for those cases where the OS itself provides the instrumentation.

Note 6: This group is required only for systems that have video and monitor (or other display device)
hardware that supports DDC interfaces.

Wired for Management Baseline Page 47

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

8. Checklist: Mobile Platforms

Mobile computers have many characteristics that make them different from desktop systems.
Among these are size, weight, power constraints, and roaming (that is, occasionally-connected,
pull-model communications). Dynamically attached devices (for example, PC Cards and
swappable drives), while not unique to mobile computers, have long been a distinguishing
characteristic for mobiles and are covered in this specification. Mobile computers are also
powered from batteries when not connected to AC power. Several of these characteristics have
major impacts on the way the Wired for Management Baseline is implemented on mobile
computers.

Mobile clients are occasionally connected to communications lines meaning they roam and are
not always reachable by management applications. Managing a mobile asset is a difficult task
for corporations, resulting in a higher TCO for notebook systems. The connection type also
varies based on what is available at the traveler’s destination (LAN or dial-up). This affects
the bandwidth and latency available for remote management. Additionally, the connection is a
pull model, meaning it is made and broken at the discretion of the mobile worker—not IT. All
these differences profoundly impact the way the Baseline is implemented on a mobile
computer.

Mobile platforms are designed to be dynamically expandable. Instrumentation must be
“smarter” because devices can dynamically appear/disappear in a mobile system (for example,
PC cards, hot docking). This is especially true of dynamic communications adapters. Key parts
of the Baseline rely on communications that occur when the OS has not yet booted or is
inactive (that is, remote wakeup, Preboot Execution Environment). That necessitates the
platform have intimate knowledge of the communications adapter. Most mobile computers
have communications adapters that can be dynamically added/removed at any moment (that is,
PC card NIC, hot docking to a station that contains a NIC). The ease with which these
adapters can be swapped means that a new and different adapter, unplanned by the system
manufacturer, could be inserted by the user. This must be taken into account when applying
the Baseline to mobile platforms.

This section of the WfM Baseline specifies the minimum level of manageability that all
mobiles must meet regardless of how they are used. The objective is to ensure that mobile
computers can be managed by any management application that uses the Baseline’s open
interface specifications the same as any other system that conforms to the Baseline.

8.1 Detailed Requirements

The following table gives specific requirements for mobile platforms.

Wired for Management Baseline Page 48

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Table 8-1 Mobile Requirements

Ref# Capability Required? Comments

in01 Management Framework (DMI Version
2.0 Service Provider, SNMP Agent or
WBEM Framework) Installed and
Active

Required Either DMI, WBEM or
SNMP

in02 Local and Remote Access to
Management Data via Standard
Access Mechanisms

Required

in03 Events Generated according to
Standard Models (DMI, SNMP or
WBEM/CIM)

Recommended

in04 DMI Events conform to DMI Event
Model

Required if DMI Events
Implemented

in05 WBEM Events Conform to CIM Event
Model

Future

in06 SNMP Traps conform to “DMTF SNMP
to DMI Mapping Standard”.

Required If SNMP framework
implemented

in07 Instrumentation Supports Dynamic
Devices

Required

in08 Instrumentation Deployed and
Maintained with Product and Platform

Required CIM Recommended
Where Supported by
Platform/OS

in09 Management Data Available Required per Mobile Checklist

in10 Backward Compatibility with the WfM
1.1 Standard for Data and Events

Required Data and Events Visible
via DMI

pf01 Preboot Execution Environment Required if LAN
on motherboard
present
Recommended if
LAN adapter card
present

pf02 SMBIOS 2.2 or later Required

pf03 System boot status Required

pf04 Remote lockout Required

pf05 Platform Event Traps Recommended

pf06 Boot Integrity Services Recommended

pf07 SMBIOS data Required

pf08 System Network Boot Control Required

Wired for Management Baseline Page 49

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Ref# Capability Required? Comments

pm01 ACPI-compliant Recommended

pm02 Recommended Sleep Mode S3

pm03 Remote Wakeup Recommended

pm04 Magic Packet Recommended

pm05 Packet Filtering Recommended

pm06 Wake On Ring Recommended

pm07 Bus Power Management Required

pr01 Standard Trouble Ticket Agent installed
and active

Recommended

pr02 SES Compliance Level 2 Required If pr01 is met on the
platform

pr03 Transaction Objects Required If pr01 is met on the
platform

pr04 Required Transactions Required If pr01 is met on the
platform

pr05 Trouble Ticket Initiation Recommended

The following two tables summarize the DMI Group requirements for mobile platforms. Table
8-2 lists DMI groups required in all mobile platforms; Table 8-3 lists DMI groups required for
mobile platforms in some circumstances.

Wired for Management Baseline Page 50

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Table 8-2 DMI Groups for Mobile Platforms

Group Required? Comments
DMTF|ComponentID|001 Required
DMTF|Disks|002 Required
DMTF|General Information|001 Required
DMTF|Keyboard|003 Required
DMTF|Operating System|001 Required
DMTF|Physical Container Global
Table|001

Required

DMTF|Processor|003 Required
DMTF|System BIOS|001 Required
DMTF|System Cache|002 Required
DMTF|System Slots|003 Required Required if system slots

(including PC Card slots) are
present

DMTF|Video BIOS|001 Required
DMTF|Video|002 Required
DMTF|Memory Device|001 Required
DMTF|Memory Array Mapped
Addresses|001

Required

DMTF|Memory Device Mapped
Addresses|001

Required

DMTF|Physical Memory Array|001 Required
DMTF|Network Adapter 802 Port|001 Required Required if network adapter

is present
DMTF|Network Adapter Driver|001 Required Required if network adapter

is present
DMTF|Pointing Device|001 Required See Note 3.
DMTF|Portable Battery|001 Required
DMTF|Dynamic States|001 Required
DMTF|System Memory Settings|001 Required
DMTF|Motherboard|001 Required
DMTF|Parallel Ports|003 Required
DMTF|Serial Ports|003 Required

Note 1: Group revision levels must be equal to or greater than those listed.

Note 2: ‘Legacy’ System Resource Management and Physical Memory Management groups (see
Tables 7-2 and 7-3 in version 1.1) no longer allowed.

Note 3: DMTF|Mouse|003 is replaced by DMTF|Pointing Device|001.

Note 4: The groups are identical to the ones required by the DMTF [DMI Conform].

Wired for Management Baseline Page 51

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Table 8-3 Additional DMI Groups for Mobile Platforms

Group Required? Comments
DMTF|System Resources 2|001 Required See Note 5.
DMTF|System Resource Device Info|001 Required See Note 5.
DMTF|System Resource DMA Info|001 Required See Note 5.
DMTF|System Resource I/O Info|001 Required See Note 5.
DMTF|System Resource IRQ Info|001 Required See Note 5.
DMTF|System Resource Memory Info|001 Required See Note 5.
DMTF|Monitor Resolutions|002 Required See Note 6.

Note 5: These groups are optional for those cases where the OS itself provides the instrumentation.

Note 6: This group is required only for systems that have video and monitor (or other display device)
hardware that supports DDC interfaces.

Wired for Management Baseline Page 52

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

9. Checklist: Server Platforms

Server systems differ from desktop and mobile clients in a number of important ways. This
section outlines how the technologies addressed by the Wired for Management Baseline apply
to server systems.

In addition, an array of additional management technologies are in widespread use on server
systems. These technologies are designed to ensure that servers meet the reliability,
serviceability, and availability requirements appropriate to the business environments where
servers are deployed. Additional server technologies and requirements may be defined at a later
date.

9.1 What Makes Servers Different

The priorities for server management are quite different from those for client (desktop or
mobile) management. While the major goal for client management is to reduce per-client
maintenance and administration costs, the top priority for servers tends to be minimizing down
time. The failure of a server, or of a service hosted by a server, can impact many clients
simultaneously. The ability of the users of client systems to accomplish their tasks is directly
impacted by the availability of critical services exported by servers in the computing
environment. Examples include file and print services, electronic mail and messaging servers,
Internet gateways, routing services, and business-critical application servers.

Servers have traditionally supported advanced manageability features, focusing on remote
management from centralized administrative consoles, failure detection and critical event
notification, and diagnostic tools. In addition, servers frequently are configured with redundant
subsystems so that the server can tolerate the failure of critical components. Redundant
subsystems may support hot-plug (hot-swap) connectors, so that repairs can be performed
without bringing the server off-line. Servers are also configured for scaleable performance and
capacity; multiple processors, multiple high performance I/O peripherals, multi-chassis
configurations, intelligent I/O processors, and rack-mounted chassis all present additional
management requirements. To support these availability, serviceability, and scaling
requirements, servers frequently support sophisticated platform management infrastructures
consisting of networks of environmental sensors, firmware-based event logs, and Field
Replaceable Unit (FRU) identification support at the hardware level.

9.2 Management Characteristics of Servers

The TCO of the server is measured by metrics associated with Reliability, Availability, and
Serviceability (RAS). Server management mechanisms focus on providing fault prediction,
fault detection, and fault resilience. If a failure does occur, server management strives to
provide rapid servicing of the problem, since the Mean Time to Repair directly affects the
overall availability of the server. Rapid restoration of the server to full service usually requires

Wired for Management Baseline Page 53

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

remote notification when the problem occurs, information that identifies the FRU that failed,
and, if possible, remote mechanisms for reconfiguration and recovery. In addition, servers
frequently support automatic recovery mechanisms which allow the server to return to
operation after a failure without external intervention; for example, servers may support an
automatic server restart capability. Many of these services are accessed and controlled via
instrumentation interfaces.

Servers frequently support redundant and hot-swap hardware subsystems; examples include
disks, power supplies, fans/blowers, and hot swap PCI cards. Instrumentation needs to be
smart enough to handle multiple instances of devices and individual devices which dynamically
appear and disappear.

High quality remote management is also a high priority. Most client systems will have a user
who, if necessary, can intervene to take local actions, such as typing at the keyboard, warm or
cold reset, cycling system power, etc., whereas a server will usually be isolated from local user
intervention - both logically and physically. Therefore, servers are usually managed using a
push model, where management sessions are invoked by the remote administrator. Some
servers are configured without local I/O devices (“headless” servers); these servers are
completely dependent on remote management. When multiple servers are combined into
clusters, remote management allows all servers in the cluster to be managed from a single
administrative console and a single set of physical I/O devices.

Remote management provides the interfaces for retrieving system health information,
delivering problem alerts, and driving system recovery functions (such as system power
cycling, resetting, and reconfiguration). Remote management can also provide interfaces by
which operating systems, drivers, applications, and additional management software, such as
remote diagnostics, can be loaded.

The primary communication channel for remote server management may be WAN, LAN, or
modem connections. For example, modem connections are common in small office or branch
office environments. Servers, therefore, share some characteristics with mobile clients, in that
their connection type can vary, and the bandwidth and latency available for remote
management can vary greatly.

Emergency management is also a high priority in servers. Emergency management in this case
refers to mechanisms that allow remote management to occur under conditions where the
normal remote communications links have failed. This may be because the server is powered
down, or because a hardware or software failure is preventing the operating system from
running or making a remote connection.

Emergency management functions can be accomplished with preboot management
technologies, such as the Preboot Execution Environment (PXE). These functions include
running system configuration software, accessing system management information logs, and
downloading and re-installing the operating system and platform firmware/BIOS.

Emergency management will often provide a secondary communication channel, used for
remote management communications when the normal communication interfaces are
inoperative. The secondary channel can be implemented using an alternate network connection,
telephone line, or other communication media. The robustness of the implementation is judged
on its degree of independence from the primary communication physical interfaces and
software.

Wired for Management Baseline Page 54

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

9.3 Detailed Requirements

The following table summarizes the WfM requirements on servers.

Table 9-1 Server Requirements

Ref# Capability Required? Comments

in01 Management Framework (DMI
Version 2.0 Service Provider,
SNMP Agent or WBEM
Framework) Installed and Active

Required Either DMI, WBEM
or SNMP

in02 Local and Remote Access to
Management Data via Standard
Access Mechanisms

Required

in03 Events Generated according to
Standard Models (DMI, SNMP or
WBEM/CIM)

Recommended

in04 DMI Events conform to DMI Event
Model

Required if DMI Events
Implemented

in05 WBEM Events Conform to CIM
Event Model

Future

in06 SNMP Traps conform to “DMTF
SNMP to DMI Mapping Standard”.

Required If SNMP
Framework
implemented

in07 Instrumentation Supports Dynamic
Devices

Required

in08 Instrumentation Deployed and
Maintained with Product and
Platform

Required CIM
Recommended
Where Supported
by Platform/OS

in09 Management Data Available Required per Server
Checklist

in10 Backward Compatibility with the
WfM 1.1 Standard for Data and
Events

Required Data and Events
Visible via DMI

pf01 Preboot execution environment Recommended

pf02 SMBIOS 2.2 or later Required

pf03 System boot status Required

pf04 Remote lockout Required

pf05 Platform Event Traps Recommended

pf06 Boot Integrity Services Recommended

Wired for Management Baseline Page 55

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Ref# Capability Required? Comments

pf07 SMBIOS Data Required

pf08 System Network Boot Control Required

pm01 ACPI-compliant Required as
defined in [HDG]

See server
considerations

pm02 Recommended Sleep Mode S1

pm03 Remote Wakeup Recommended

pm04 Magic Packet Recommended

pm05 Packet Filtering Recommended

pm06 Wake On Ring Recommended

pm07 Bus Power Management Recommended

pr01 Standard Trouble Ticket Agent
Installed and Active

Recommended

pr02 SES Compliance Level 2 Required If pr01 is met on
the platform

pr03 Transaction Objects Required If pr01 is met on
the platform

pr04 Required Transactions Required If pr01 is met on
the platform

pr05 Trouble Ticket Initiation Recommended

Table 9-2 DMI Groups for Servers

Group Required? Comments
*DMTF|ComponentID|001 Required
*DMTF|Cooling Device|002 Required Required if supported

by platform
*DMTF|Cooling Unit Global Table|001 Required
 DMTF|Disks Mapping Table|001 Obsolete See Table 9.3 Mass

Storage Groups for
Servers

*DMTF|Disks|002 Obsolete See Table 9.3 Mass
Storage Groups for
Servers

*DMTF|FRU|002 Required
*DMTF|General Information|001 Required
*DMTF|Keyboard|003 Required
*DMTF|Memory Array Mapped Addresses|001 Required
*DMTF|Memory Device Mapped Addresses|001 Required
*DMTF|Memory Device|001 Required
*DMTF|Motherboard|001 Required

Wired for Management Baseline Page 56

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Group Required? Comments
*DMTF|Network Adapter 802 Port|001 Required Required for adapters

provided on the
motherboard

*DMTF|Network Adapter Driver|001 Required Required for adapters
provided on the
motherboard

*DMTF|Operating System|001 Required
*DMTF|Operational State|003 Required
*DMTF|Parallel Ports|003 Required Required for ports

provided on the
motherboard

DMTF|Partition|001 Obsolete
*DMTF|Physical Container Global Table|001 Required
*DMTF|Physical Memory Array|001 Required
*DMTF|Pointing Device|001 Required See Note 3
*DMTF|Power Supply|002 Required
*DMTF|Power Unit Global Table|001 Required
*DMTF|Processor|003 Required
*DMTF|Serial Ports|003 Required Required for ports

provided on the
motherboard

*DMTF|System BIOS|001 Required
*DMTF|System Cache|002 Required
DMTF|System Hardware Security|001 Required Required if supported

by platform
*DMTF|System Memory Settings|001 Required
DMTF|System Power Controls|001 Required Required if supported

by platform
*DMTF|System Slots|003 Required
DMTF|Temperature Probe|001 Required Required if supported

by platform
*DMTF|Video|002 Required
DMTF|Voltage Probe|001 Required Required if supported

by platform

Note 1: Group revision levels must be equal to or greater than those listed.

Note 2: ‘Legacy’ System Resource Management and Physical Memory Management groups (see
Tables 7-2 and 7-3 in v1.1) no longer allowed.

Note 3: DMTF|Mouse|003 is replaced by DMTF|Pointing Device|001.

Note 4: Disks, Disk Mapping Table and Partitions are legacy groups superseded by the Mass Storage
MIF.

Legend for Table 9-2:

DMTF CG = Desktop Management Task Force [DMI Conform]

* These groups are also required by the DMTF CG

Wired for Management Baseline Page 57

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Table 9-3 Additional DMI Groups for Server Platforms

DMTF|System Resource Device Info|001 Recommended Downgrade from v1.1.
See Note 5.

DMTF|System Resource DMA Info|001 Recommended Downgrade from v1.1.
See Note 5.

DMTF|System Resource I/O Info|001 Recommended Downgrade from v1.1.
See Note 5.

DMTF|System Resource IRQ Info|001 Recommended Downgrade from v1.1.
See Note 5.

DMTF|System Resource Memory Info|001 Recommended Downgrade from v1.1.
See Note 5.

DMTF|System Resources 2|001 Recommended Downgrade from v1.1.
See Note 5.

Note 5: It is recommended that the OS platform itself provides instrumentation for groups in
this section. Data is OS-specific and may not be available from all server operating systems.

9.3.1 Mass Storage Subsystems

It is strongly recommended that mass storage subsystems are instrumented on server systems.
If instrumentation is provided, it must support the following data:

DMTF|Storage Devices|001 REQUIRED

EventGeneration|DMTF^^Storage Devices|001 REQUIRED

DMTF|Storage Controller|001 REQUIRED

EventGeneration|DMTF^^Storage Controller|001 REQUIRED

DMTF|Bus Port|001 REQUIRED

EventGeneration|DMTF^^Bus Port|001 RECOMMENDED

DMTF|Fibre Channel Bus Port Extensions|001 RECOMMENDED

DMTF|SSA Bus Port Extensions|001 RECOMMENDED

DMTF|Mass Storage Association|001 REQUIRED

EventGeneration|DMTF^^Mass Storage Association|002 RECOMMENDED

DMTF|Bus Port Association|001 REQUIRED

DMTF|Worldwide Identifier|001 REQUIRED

DMTF|SubComponent Software|001 REQUIRED

DMTF|Mass Storage Statistics|001 RECOMMENDED

DMTF|Operational State|003 REQUIRED

DMTF|System Cache|003 REQUIRED

DMTF|ComponentID|001 REQUIRED

Wired for Management Baseline Page 58

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

It is strongly recommended that RAID subsystems are instrumented on server systems. If
instrumentation is provided, it must support the following data:

DMTF|Component Spare Association|001 REQUIRED

DMTF|Physical Extent|001 REQUIRED

DMTF|Aggregate Physical Extent|001 REQUIRED*

DMTF|Protected Space Extent|001 REQUIRED

DMTF|Aggregate Protected Space Extent|001 REQUIRED*

DMTF|Volume Set|001 REQUIRED

EventGeneration|DMTF^^Volume Set|001 REQUIRED

DMTF|Redundancy Group|001 REQUIRED

EventGeneration|DMTF^^Redundancy Group|001 REQUIRED
*One or the other of these groups is required, but not both.

Wired for Management Baseline Page 59

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

10. Terms and Acronyms

This section briefly describes the platform management information technologies referenced in
these guidelines and gives references to full definitions and descriptions of these technologies.

ACPI Advanced Configuration and Power Interface; an
interface between the OS and the hardware and BIOS
designed to achieve independence between the hardware
and the software.

API Application Programming Interface.

asset management The process of maximizing the use of assets to produce
revenue while minimizing their overall costs.
Manageable systems contribute to asset management by
capturing inventory and tracking information, which
enables organizations to analyze key cost variables of
their technology purchases. The data gathered by
manageable systems can assist asset management issues
such as inventory, consolidating and rationalizing license
issues, leasing considerations, analyzing training costs,
analyzing software upgrades for volume purchasing
plans, evaluating the cost-efficiency of outsourcing, and
improving warranty usage.

attribute A piece of information about a component; the building
block of a MIF. An attribute describes a single
characteristic of a manageable product or component.
For example, the clock speed of a processor chip is an
attribute of a group that describes that chip. A set of
related attributes constitutes a group.

BINL Boot Intervention Network Layer; extended DHCP
service.

CI Component Interface; the DMI layer used by component
instrumentation.

CLSID A class ID; a form of a UUID (GUID).

Common Information Model (CIM) An object-oriented schema defined by the DMTF. CIM
is an information model that provides a common way to
describe and share management information enterprise-
wide. It serves as the management information schema
for WBEM, along with other specifications to be
defined. CIM is designed to be extended for each
management environment in which it is used.

Wired for Management Baseline Page 60

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

CIM Object Manager (CIM OM) Application level software that manages the CIM
information model in a WBEM framework.

component Any hardware, software, or firmware element contained
in a computer system. A modem, printer, network
interface card, spreadsheet software program, and the
operating system are all components.

component instrumentation The executable code that provides DMI (see entry)
management functionality (attribute values, etc.) for a
particular component. The component instrumentation
uses the Component Interface (CI) to provide this
information.

configuration management The aspect of manageability dealing with tasks such as
optimizing the user’s configuration for given tasks, and
discovering what hardware and components are in the
system or server and ensuring compatibility among them.

CSC The Customer Support Consortium is a standards body
composed of technology companies and technology support
providers which focuses on reducing support costs by
establishing standards and business models to enable the
sharing of solution information and to enable real-time
collaboration.

Desktop Management Interface
(DMI)

A platform management information framework, built by
the DMTF, designed to provide manageability for
desktop and server computing platforms by providing an
interface that is:

n Independent of any specific desktop operating
system, network operating system, network
protocol, management protocol, processor, or
hardware platform.

n Easy for vendors to implement.

n Easily mapped to higher-level protocols.

Desktop Management Task Force
(DMTF)

The DMTF is a standards organization comprised of
companies from all areas of the computer industry. Its
purpose is to create the standards and infrastructure for
cost-effective management of PC systems.

DHCP Dynamic Host Configuration Protocol; used to get
information from the configuration server

DMI compliance The DMTF owns the responsibility for the definition of
DMI 2.0 compliance.

Wired for Management Baseline Page 61

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

DMI Service Provider
(DMI SP)

System software on the target system which provides
services between the management application and
component instrumentation. The DMI SP arbitrates
access to component instrumentation and manages the
MIF database.

event Unsolicited information sent from a component to the
management framework detailing an unusual
circumstance or notable event. This information is
forwarded to all management applications registered
for event notification. For example, events can be sent
when an error occurs or when a new version of a piece
of software is installed. Component manufacturers
determine which events will be related to their product
and what information will be passed about the event.

fault notification The ability of instrumented systems to detect when a
component has exceeded system reliability watermark;
such as maximum temperature. The system can then
send out detailed alerts and can save critical data or
files (if events occur that indicate the system is failing
or may be about to fail). These alerts are also useful in
building predictive failure models and developing a
fault-tolerant computing structure.

Field Replaceable Unit (FRU) Hardware component which can be replaced in the
field, without swapping out the entire system.

group A set of related attributes for a given component.

GUID A globally unique identifier and a synonym for UUID.

IDL Interface Description Language.

Internet Engineering Task Force
(IETF)

The Internet Engineering Task Force is an industry
standards group focusing on the evolution of the
Internet architecture and the smooth operation of the
Internet.

IID An interface identifier and also a form of a UUID
(GUID).

instrumentation A common methodology and syntax for defining and
reporting the management features and capabilities of
all hardware, software, and attached peripherals of the
system. Instrumentation enables management
applications to understand and change the state of a
system and to be notified of state changes.

interoperability The ability of management applications, consoles, and
manageable products to work together and make
systems manageable.

Wired for Management Baseline Page 62

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

inventory management The aspect of manageability that addresses the need to
identify system and software components.
Instrumented systems can show a complete inventory
of all components and subsystems—information that’s
highly useful for diagnosing problems remotely,
tracking assets, and optimizing configurations and
performance levels.

LOM (LAN on Motherboard) The concept of integrating the LAN subsystem onto the
motherboard.

manageability The use of technologies and products to enhance the
usability of desktops, mobile, and server platforms,
and thus reduce the cost of deployment, ownership, and
administration. Aspects of manageability include asset
management, configuration management, fault
management, inventory management, network
management, performance management, and system
management.

Managed Client A desktop, mobile, or server system which provides
management information and interfaces to a management
application.

Management Application Any program local to the managed client or resident on
the management server, which addresses one or more
of the aspects of manageability.

Management Information Base
(MIB)

A collection of managed SNMP objects, residing in an
information store.

Management Information Format
(MIF)

An ASCII text file in the DMI architecture that
describes a product’s manageable features and
attributes. The DMI maintains this information in a
MIF database and makes it available to operating
systems and management applications. The DMTF has
specified MIF formats for a variety of system types
and peripheral devices.

Management Object Format (MOF) Language that describes CIM management
information, based on the Interface Definition
Language (IDL). MOF data is stored in an ASCII text
file. DMTF is releasing MOF formats specifying the
objects and associations necessary for management of
systems, devices, applications, and networks

Management Interface (MI) The DMI (see entry) layer between management
applications and the Service Provider.

MIB Module Collections of related SNMP objects are defined in
MIB modules. These modules are written using a
subset of OSI’s Abstract Syntax Notation One
(ASN.1).

Wired for Management Baseline Page 63

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

MOF Specification Refers to a collection of management information
described in a manner that conforms to the MOF
syntax.

MTFTP Multicast TFTP; used to download NBP to many
clients simultaneously.

network management Along with server and system management, one of the
three major components of managing a computing
environment. Network management includes
optimizing the performance, configuration, security,
failure analysis, and repair of the infrastructure
components in a LAN, WAN, or Internet/intranet.
Infrastructure components include items such as
switches, adapter cards, routers, bridges, and
gateways, but not the end-nodes themselves.

OS Operating System.

OSPM Operating System Directed Power Management.

PCI PM PCI Bus Power Management Interface Specification

power management Technology that allows a system to consume less
power when not in use and to be fully operational when
awakened.

proxyDHCP “Fake” DHCP; extended DHCP service.

Preboot Execution Environment
(PXE)

A means by which agents can be loaded remotely onto
systems to perform management tasks in the absence of
a running OS. To enable the interoperability of clients
and downloaded bootstrap programs, the client preboot
code must provide a set of services for use by a
downloaded bootstrap. It also must ensure certain
aspects of the client state at the point in time when the
bootstrap begins executing.

Wired for Management Baseline Page 64

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Reliability, Availability,
Serviceability (RAS)

Three vital aspects of manageability:

Reliability encompasses hardware and software that
reduce failure rates and protect data if a system or
server fails. Features that increase reliability include
parity checking over the I/O bus, fail-safe processors,
processor self-checking, and error-correcting code
(ECC) memory.

Availability includes hardware redundancy and
software features that allow a system or server to
continue operation in spite of a component failure. Key
availability features range from redundant fans and
power supplies to mirrored disk arrays to
environmental monitoring.

Serviceability refers to hardware and software that
reduce downtime once a failure occurs. Serviceability
includes features such as failure alerts and monitoring
capabilities, as well as vendor support offerings such
as on-site service and support hot-lines.

Remote Procedure Call (RPC) An industry-standard method for communication with
remote, networked systems. DMI Version 2.0 specifies
RPCs as the standard mechanism for remote access to
manageable systems.

remote wakeup (RWU) The ability of a managed computer to be remotely
awakened from a sleeping state.

server management Dealing with server systems as a managed object,
rather than as the manager of other managed objects.

Simple Network Management
Protocol (SNMP)

The most widely used protocol for communicating
management information for networks. SNMP focuses
primarily on the network backbone; it is complemented
by standards such as DMI, which extend
manageability to end systems.

system management Along with network and server management, one of the
three major components of managing a computing
environment. System management refers to controlling,
configuring, installing, and monitoring the
applications, servers, and clients in a distributed
computing environment.

System Management (SM) BIOS A standard interface to management software via data
structures through which system attributes are
reported.

TFTP Trivial File Transport Protocol; used to download NBP
from TFTP server.

Wired for Management Baseline Page 65

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Total Cost of Ownership (TCO) The lifetime costs of a product, including the initial
hardware and software purchase price as well as
installation, service, support, upgrades, training,
downtime, and other factors.

Trap See event.

UNDI Universal NIC Driver Interface; a PXE API that
provides a device independent network interface to the
NBP.

Unicode A character encoding standard. Unicode characters are
2 octets each. When the first octet is zero, the second
octet maps to the characters in ISO 8859-1.

UUID A Universally Unique IDentifier generated by the
GUIDGEN utility.

Web-Based Enterprise Management
(WBEM)

A set of platform management information
technologies originally proposed by BMC Software,
Inc., Cisco Systems, Inc., Compaq Computer
Corporation, Intel Corporation, and Microsoft
Corporation to enable manageability over the Internet
and corporate intranets. WBEM seeks to reduce the
complexity and costs of enterprise management by
allowing administrators to use any Web browser to
manage disparate systems, networks, and applications.
It envisions a common data model and Internet
protocol that integrate existing standards like the DMI,
SNMP, CMIP, and HTTP.

Win32 Driver Model (WDM) A driver model based on the Windows NT driver
model that is designed to provide a common set of I/O
services and binary-compatible device drivers for both
Windows NT and future Windows operating systems
for specific classes of drivers. These driver classes
include USB and IEEE 1394 buses, audio, still-image
capture, video capture, and HID-compliant devices
such as USB mice, keyboards, and joysticks.

Win32 Extensions Schema Another name for the Win32 extensions to the CIM
schema for Windows operating systems. For
specifications on the Win32 Extensions Schema, see
[WBEM].

Windows Management Interface
(WMI)

WMI is an extension to WDM, developed for
Windows NT 5.0 and Windows 98, to provide an
operating system interface through which instrumented
components can provide information and notifications.
See [WBEM] for more information.

Wired for Management Baseline Page 66

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

11. Information and Resource
References

For Wired for Management information for developers:

http://developer.intel.com/ial/wfm/

For background on the Wired for Management Initiative:

http://www.intel.com/businesscomputing/tech/

Related Specifications

For a copy of the ACPI specification [ACPI]:

http://www.teleport.com\~acpi

For more information on AMD’s Magic Packet technology [Magic Packet]:

http://www.amd.com/products/npd/overview/20212d.html.

For more information about the DMTF’s Common Information Model [CIM]:

[1] Common Information Model (CIM) Specification, Version 2.0, March 3, 1998

http://www.dmtf.org

For more information about DMI:

[1] [DMI] Desktop Management Interface Specification, Version 2.00, March 27, 1996,
Desktop Management Task Force, Inc.

http://www.dmtf.org/tech/specs.html

[2] Desktop Management Interface Compliance Guidelines, Version 1.0, September 11,
1995, Desktop Management Task Force, Inc.

http://www.dmtf.org/tech/specs.html

[3] Systems Standard Group Definitions, Approved Version 1.0, May 1, 1996, Desktop
Management Task Force, Inc.

http://www.dmtf.org/tech/apps.html

Wired for Management Baseline Page 67

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

[4] LAN Adapter Standard Groups Definition, Release Version 1.0, October 4, 1994,
Desktop Management Task Force, Inc.

http://www.dmtf.org/tech/apps.html

[5] [MIF Guidelines] Desktop Management Task Force: Enabling your product for
manageability with MIF files, Revision 1.0, November 1994, Desktop Management
Task Force, Inc.

http://www.dmtf.org/tech/apps.html

[6] [DMI Conform] Desktop Management Task Force: Desktop Management Interface
(DMI) 2.0 Conformance Guidelines, Version 1.0, Desktop Management Task Force,
Inc..

http://www.dmtf.org/tech/specs.html

[7] [SNMP to DMI] Desktop Management Task Force: DMTF SNMP to DMI Mapping
Standard, Desktop Management Task Force, Inc.

http://www.dmtf.org/tech/specs.html

For the ‘Instantly Available’ PC Power Management Design Guide, Version 1.0, [PC
POWER], including more information on Operating System Directed Power
Management:

http://developer.intel.com/design/power/pcpower.htm

For additional information on the Network Device Class Power Management Reference
Specification (Version 1.0) [NDC PM]:

http://www.microsoft.com/hwdev/ONNOW.HTM#pmSPECS

For the PC'9x System Design Guide [PC HDG], and for the Hardware Design Guide
Version 1.0 for Microsoft Windows NT Server [HDG]:

http://developer.intel.com/solutions/tec/pc98.htm

http://www.microsoft.com/hwdev/desguid/default.htm

The PCI Bus Power Management Interface Specification (PCI-PM) [PCI PM] can be
found at:

http://developer.intel.com/ial/powermgm/specs.htm

The PCI Engineering Change Request - Addition of 3.3Vaux signal to Connector can be
found at:

http://developer.intel.com/design/power/pcipower.htm

For additional information on the PCI Bus Power Management Interface Specification
for CardBus Cards and PCI Bus Power Management Interface Specification for PCI
to CardBus Bridges published by the PCMCIA:

http://www.pc-card.com

Wired for Management Baseline Page 68

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

For more information on the Problem Resolution Standards [SES/SIS] for standard
trouble tickets, published by the Customer Support Consortium and the Desktop
Management Task Force:

[1] Solution Exchange Standard, Version 1.0.

http://www.customersupport.org/Working.htm
http://www.dmtf.org/work/smwc.html

[2] Service Incident Exchange Standard, Version 1.0.

http://www.customersupport.org/Working.htm
http://www.dmtf.org/work/smwc.html

[3] MOF Addendum, Version 1.0rc.

http://www.customersupport.org/Working.htm
http://www.dmtf.org/work/smwc.html

Additional information about the SMBIOS specification [SMBIOS]:

http://developer.intel.com/ial/wfm/design/smbios

For Web Based Enterprise Management (WBEM) [WBEM]:

http://www.microsoft.com/management/wbem/

For the Windows Management Interface (WMI):

http://www.microsoft.com/hwdev/desinit/wmi.htm

For SNMP information, check the Internet Drafts available through the Internet
Engineering Task Force:

http://www.ietf.cnri.reston.va.us/

For the Preboot Execution Environment Specification, version 2.0 [PXE]:

http://developer.intel.com/ial/wfm/wfmspecs.htm

For the Boot Integrity Services Specification, version 1.0 [BIS]:

http://developer.intel.com/ial/wfm/wfmspecs.htm

For the Platform Event Trap Format Specification, version 1.0 [PET]:

http://developer.intel.com/design/servers/ipmi

Wired for Management Baseline Page 69

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Standards’ Groups - Contact Information

To contact the CSC:

Customer Support Consortium
101 Fifth Ave. N., Suite 1900
Seattle, WA, 98101
Phone: (206) 622-5200 x442
Fax: (206) 667-9181
URL: http://www.customersupport.org

To contact the DMTF:

Desktop Management Task Force
M/S JF2-53
2111 N.E. 25th Avenue
Hillsboro. OR 97124
Phone: (503) 264-9300
Fax: (503) 264-9027
Email: dmtf-info@dmtf.org

To contact the IETF:

Internet Engineering Task Force
URL: www.ietf.org

To contact the PCMCIA (Personal Computer Memory Card International Association):

PCMCIA
2655 North First St. Suite 209
San Jose, CA 95151
Phone: (408) 433-CARD
Fax: (408) 433-9558
URL: www.pc-card.com

Wired for Management Baseline Page A 1

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Attachment A
UUIDs and GUIDs

Network Working Group Paul J. Leach, Microsoft

INTERNET-DRAFT Rich Salz, Open Group

<draft-leach-uuids-guids-00.txt>

Category: Informational

Expires August 24, 1997 February 24, 1997

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet
Engineering Task Force (IETF), its areas, and working groups. Note that other groups may
also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or made obsolete by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress”.

To learn the current status of any Internet-Draft, please check the “1id-abstracts.txt” listing
contained in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net
(Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US
West Coast).

Distribution of this document is unlimited. Please send comments to the authors or the CIFS
mailing list at cifs@listserv.msn.com. Discussions of the mailing list are archived at
http://microsoft.ease.lsoft.com/archives/CIFS.html.

Abstract

This specification defines the format of UUIDs (Universally Unique IDentifier), also known as
GUIDs (Globally Unique IDentifier). A UUID is 128 bits long, and if generated according to
the one of the mechanisms in this document, is either guaranteed to be different from all other
UUIDs/GUIDs generated until 3400 A.D. or extremely likely to be different (depending on the
mechanism chosen). UUIDs were originally used in the Network Computing System (NCS) [1]
and later in the Open Software Foundation’s (OSF) Distributed Computing Environment [2].

This specification is derived from the latter specification with the kind permission of the OSF.

Wired for Management Baseline Page A 2

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Introduction

This specification defines the format of UUIDs (Universally Unique IDentifiers), also known
as GUIDs (Globally Unique IDentifiers). A UUID is 128 bits long, and if generated according
to the one of the mechanisms in this document, is either guaranteed to be different from all
other UUIDs/GUIDs generated until 3400 A.D. or extremely likely to be different (depending
on the mechanism chosen).

Motivation

One of the main reasons for using UUIDs is that no centralized authority is required to
administer them (beyond the one that allocates IEEE 802.1 node identifiers). As a result,
generation on demand can be completely automated, and they can be used for a wide variety of
purposes. The UUID generation algorithm described here supports very high allocation rates:
10 million per second per machine if you need it, so that they could even be used as transaction
IDs.

UUIDs are fixed-size (128 bits), which is reasonably small relative to other alternatives. This
fixed, relatively small, size lends itself well to sorting, ordering, and hashing of all sorts,
storing in databases, simple allocation, and ease of programming in general.

Specification

A UUID is an identifier that is unique across both space and time, with respect to the space of
all UUIDs. To be precise, the UUID consists of a finite bit space. Thus the time value used for
constructing a UUID is limited and will roll over in the future (approximately at A.D. 3400,
based on the specified algorithm). A UUID can be used for multiple purposes, from tagging
objects with an extremely short lifetime to reliably identifying very persistent objects across a
network.

The generation of UUIDs does not require that a registration authority be contacted for each
identifier. Instead, it requires a unique value over space for each UUID generator. This
spatially unique value is specified as an IEEE 802 address, which is usually already available
to network-connected systems. This 48-bit address can be assigned based on an address block
obtained through the IEEE registration authority. This section of the UUID specification
assumes the availability of an IEEE 802 address to a system desiring to generate a UUID, but
if one is not available section 4 specifies a way to generate a probabilistically unique one that
can not conflict with any properly assigned IEEE 802 address.

Format

The following table gives the format of a UUID. The UUID consists of a record of 16 octets.
The fields are in order of significance for comparison purposes, with “time_low” the most
significant, and “node” the least significant.

Wired for Management Baseline Page A 3

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Field Data Type Octet # Note

time_low unsigned 32
bit integer

0-3 The low field of the
timestamp.

time_mid unsigned 16
bit integer

4-5 The middle field of the
timestamp.

time_hi_and_version unsigned 16
bit integer

6-7 The high field of the
timestamp multiplexed with
the version number.

clock_seq_hi_and_reserved unsigned 8
bit integer

8 The high field of the clock
sequence multiplexed with
the variant.

clock_seq_low unsigned 8
bit integer

9 The low field of the clock
sequence.

node unsigned 48
bit integer

10-15 The spatially unique node
identifier.

To minimize confusion about bit assignments within octets, the UUID record definition is
defined only in terms of fields that are integral numbers of octets. The version number is in the
most significant 4 bits of the time stamp (time_hi), and the variant field is in the most
significant 3 bits of the clock sequence (clock_seq_high).

The timestamp is a 60-bit value. For UUID version 1, this is represented by Coordinated
Universal Time (UTC) as a count of 100-nanosecond intervals since 00:00:00.00, 15 October
1582 (the date of Gregorian reform to the Christian calendar).

The following table lists currently defined versions of the UUID.

Msb0 Msb1 Msb2 Msb3 Version Description

0 0 0 1 1 The version specified in
this document.

0 0 1 0 2 Reserved for DCE
Security version, with
embedded POSIX UIDs.

The variant field determines the layout of the UUID. The structure of UUIDs is fixed across
different versions within a variant, but not across variants; hence, other UUID variants may
not interoperate with the UUID variant specified in this document. Interoperability of UUIDs is
defined as the applicability of operations such as string conversion, comparison, and lexical
ordering across different systems. The variant field consists of a variable number of the msbs
of the clock_seq_hi_and_reserved field.

The following table lists the contents of the variant field.

Wired for Management Baseline Page A 4

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Msb0 Msb1 Msb2 Description

0 - - Reserved, NCS backward compatibility.

1 0 - The variant specified in this document.

1 1 0 Reserved, Microsoft Corporation GUID.

1 1 1 Reserved for future definition.

The clock sequence is required to detect potential losses of monotonicity of the clock. Thus,
this value marks discontinuities and prevents duplicates. An algorithm for generating this value
is outlined in the “Clock Sequence” section below.

The clock sequence is encoded in the 6 least significant bits of the clock_seq_hi_and_reserved
field and in the clock_seq_low field.

The node field consists of the IEEE address, usually the host address. For systems with
multiple IEEE 802 nodes, any available node address can be used. The lowest addressed octet
(octet number 10) contains the global/local bit and the unicast/multicast bit and is the first
octet of the address transmitted on an 802.3 LAN.

Depending on the network data representation, the multi-octet unsigned integer fields are
subject to byte swapping when communicated between different endian machines.

The nil UUID is special form of UUID that is specified to have all 128 bits set to 0 (zero).

Algorithms for Creating a UUID

Various aspects of the algorithm for creating a UUID are discussed in the following sections.
UUID generation requires a guarantee of uniqueness within the node ID for a given variant and
version. Interoperability is provided by complying with the specified data structure. To prevent
possible UUID collisions, which could be caused by different implementations on the same
node, compliance with the algorithm specified here is required.

Clock Sequence

The clock sequence value must be changed whenever:

n the UUID generator detects that the local value of UTC has gone backward.

n the UUID generator has lost its state of the last value of UTC used, indicating that time
may have gone backward; this is typically the case on reboot.

While a node is operational, the UUID service always saves the last UTC used to create a
UUID. Each time a new UUID is created, the current UTC is compared to the saved value and
if either the current value is less (the non-monotonic clock case) or the saved value was lost,
the clock sequence is incremented modulo 16,384, thus avoiding production of duplicate
UUIDs.

The clock sequence must be initialized to a random number to minimize the correlation across
systems. This provides maximum protection against node identifiers that may move or switch
from system to system rapidly. The initial value MUST NOT be correlated to the node
identifier.

Wired for Management Baseline Page A 5

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

The rule of initializing the clock sequence to a random value is waived if, and only if, all of the
following are true:

n The clock sequence value is stored in non-volatile storage.

n The system is manufactured such that the IEEE address ROM is designed to be
inseparable from the system by either the user or field service, so that it cannot be moved
to another system.

n The manufacturing process guarantees that only new IEEE address ROMs are used.

n Any field service, remanufacturing, or rebuilding process that could change the value of
the clock sequence must reinitialize it to a random value.

In other words, the system constraints prevent duplicates caused by possible migration of the
IEEE address, while the operational system itself can protect against non-monotonic clocks,
except in the case of field service intervention. At manufacturing time, such a system may
initialise the clock sequence to any convenient value.

System Reboot

There are two possibilities when rebooting a system:

n The UUID generator state - the last UTC, adjustment, and clock sequence - of the UUID
service has been restored from non-volatile store.

n The state of the last UTC or adjustment has been lost.

If the state variables have been restored, the UUID generator just continues as normal.
Alternatively, if the state variables cannot be restored, they are reinitialised, and the clock
sequence is changed.

If the clock sequence is stored in non-volatile store, it is incremented; otherwise, it is
reinitialized to a new random value.

Clock Adjustment

UUIDs may be created at a rate greater than the system clock resolution. Therefore, the system
must also maintain an adjustment value to be added to the lower-order bits of the time.
Logically, each time the system clock ticks, the adjustment value is cleared. Every time a
UUID is generated, the current adjustment value is read and incremented atomically then added
to the UTC time field of the UUID.

Clock Overrun

The 100 nanosecond granularity of time should prove sufficient even for bursts of UUID
creation in high-performance multiprocessors. If a system overruns the clock adjustment by
requesting too many UUIDs within a single system clock tick, the UUID service may raise an
exception, handled in a system or process-dependent manner either by:

n terminating the requester

n reissuing the request until it succeeds

n stalling the UUID generator until the system clock catches up.

If the processors overrun the UUID generation frequently, additional node identifiers and
clocks may need to be added.

Wired for Management Baseline Page A 6

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

UUID Generation

UUIDs are generated according to the following algorithm:

n Determine the values for the UTC-based timestamp and clock sequence to be used in the
UUID, as described above.

n For the purposes of this algorithm, consider the timestamp to be a 60-bit unsigned
integer and the clock sequence to be a 14-bit unsigned integer. Sequentially number the
bits in a field, starting from 0 (zero) for the least significant bit.

n Set the time_low field equal to the least significant 32-bits (bits numbered 0 to 31
inclusive) of the time stamp in the same order of significance.

n Set the time_mid field equal to the bits numbered 32 to 47 inclusive of the time stamp in
the same order of significance.

n Set the 12 least significant bits (bits numbered 0 to 11 inclusive) of the
time_hi_and_version field equal to the bits numbered 48 to 59 inclusive of the time
stamp in the same order of significance.

n Set the 4 most significant bits (bits numbered 12 to 15 inclusive) of the
time_hi_and_version field to the 4-bit version number corresponding to the UUID
version being created, as shown in the table above.

n Set the clock_seq_low field to the 8 least significant bits (bits numbered 0 to 7 inclusive)
of the clock sequence in the same order of significance.

n Set the 6 least significant bits (bits numbered 0 to 5 inclusive) of the
clock_seq_hi_and_reserved field to the 6 most significant bits (bits numbered 8 to 13
inclusive) of the clock sequence in the same order of significance.

n Set the 2 most significant bits (bits numbered 6 and 7) of the
clock_seq_hi_and_reserved to 0 and 1, respectively.

n Set the node field to the 48-bit IEEE address in the same order of significance as the
address.

String Representation of UUIDs

For use in human readable text, a UUID string representation is specified as a sequence of
fields, some of which are separated by single dashes.

Each field is treated as an integer and has its value printed as a zero-filled hexadecimal digit
string with the most significant digit first. The hexadecimal values a to f inclusive are output as
lower case characters, and are case insensitive on input. The sequence is the same as the UUID
constructed type.

The formal definition of the UUID string representation is provided by the following extended
BNF:

UUID = <time_low> “-” <time_mid> “-”
 <time_high_and_version> “-”
 <clock_seq_and_reserved>
 <clock_seq_low> “-” <node>
time_low = 4*<hexOctet>

Wired for Management Baseline Page A 7

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

time_mid = 2*<hexOctet>
time_high_and_version = 2*<hexOctet>
clock_seq_and_reserved = <hexOctet>
clock_seq_low = <hexOctet>
node = 6*<hexOctet
hexOctet = <hexDigit> <hexDigit>
hexDigit =

 “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” |

 | “a” | “b” | “c” | “d” | “e” | “f”
 | “A” | “B” | “C” | “D” | “E” | “F”

The following is an example of the string representation of a UUID:

f81d4fae-7dec-11d0-a765-00a0c91e6bf6

Comparing UUIDs

Consider each field of the UUID to be an unsigned integer as shown in the table in Section 3.1.
Then, to compare a pair of UUIDs, arithmetically compare the corresponding fields from each
UUID in order of significance and according to their data type. Two UUIDs are equal if and
only if all the corresponding fields are equal. The first of two UUIDs follows the second if the
most significant field in which the UUIDs differ is greater for the first UUID. The first of a
pair of UUIDs precedes the second if the most significant field in which the UUIDs differ is
greater for the second UUID.

Byte order of UUIDs

UUIDs may be transmitted in many different forms, some of which may be dependent on the
presentation or application protocol where the UUID may be used. In such cases, the order,
sizes, and byte orders of the UUIDs fields on the wire will depend on the relevant presentation
or application protocol. However, it is strongly RECOMMENDED that the order of the fields
conform with ordering set out in Section 3.1 above. Furthermore, the payload size of each field
in the application or presentation protocol MUST be large enough that no information is lost in
the process of encoding them for transmission.

In the absence of explicit application or presentation protocol specification to the contrary, a
UUID is encoded as a 128-bit object, as follows: the fields are encoded as 16 octets, with the
sizes and order of the fields defined in Section 3.1, and with each field encoded with the Most
Significant Byte first (also known as network byte order).

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| time_high |
+-+
| time_mid | time_hi_and_version |
+-+
|clk_seq_hi_res | clk_seq_low | node (0-1) |
+-+
| node (2-5) |
+-+

Wired for Management Baseline Page A 8

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Node IDs When No IEEE 802 Network Card Is Available

This section describes how to generate UUIDs for systems with no IEEE 802-compliant
network card or other source of IEEE 802 addresses.

The ideal solution is to obtain a 47-bit cryptographic quality random number, and use it as the
low 47 bits of the node ID, with the most significant bit of the first octet of the node ID set to
1. This bit is the unicast/multicast bit, which will never be set in IEEE 802 addresses obtained
from network cards; hence, there can never be a conflict between UUIDs generated by
machines with and without network cards.

If a system does not have a primitive to generate cryptographic quality random numbers, then
generate one using one of the sources of randomness available on most systems. Such sources
are system specific, but often include:

n the percent of memory in use

n the size of main memory in bytes

n the amount of free main memory in bytes

n the size of the paging or swap file in bytes

n free bytes of paging or swap file

n the total size of user virtual address space in bytes

n the total available user address space bytes

n the size of boot disk drive in bytes

n the free disk space on boot drive in bytes

n the current time

n the amount of time since the system booted

n the individual sizes of files in various system directories

n the creation, last read, and modification times of files in various system directories

n the utilization factors of various system resources (heap, etc.)

n current mouse cursor position

n current caret position

n current number of running processes, threads

n handles or IDs of the desktop window and the active window

n the value of stack pointer of the caller

n the process and thread ID of caller

n various processor architecture specific performance counters (instructions executed,
cache misses, TLB misses)

Note that the above kinds of sources of randomness are used to seed cryptographic quality
random number generators on systems without special hardware for their construction.

Wired for Management Baseline Page A 9

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

In addition, items such as the computer’s name and the name of the operating system, while not
strictly speaking random, will help differentiate the results from those obtained by other
systems.

The exact algorithm to generate a node ID using these data is system specific, because both the
data available and the functions to obtain them are often very system specific. However,
assuming that one can concatenate all the values from the randomness sources into a buffer,
and that a cryptographic hash function such as MD5 [3] is available, the following code will
compute a node ID:

#include <md5.h>
#define HASHLEN 16

void GenNodeID(
unsigned char * pDataBuf, // concatenated “randomness

values”
long cData, // size of randomness values
unsigned char NodeID[6] // node ID

)
{
 int i, j, k;
 unsigned char Hash[HASHLEN];
 MD_CTX context;

 MDInit (&context);
 MDUpdate (&context, pDataBuf, cData);
 MDFinal (Hash, &context);

 for (j = 0; j<6; j++) NodeId[j]=0;
 for (i = 0,j = 0; i < HASHLEN; i++) {

 NodeID[j++] ^= Hash[i];
 if (j == 6) j = 0;
};
NodeID[0] |= 0x80; // set the multicast bit

};

Other hash functions, such as SHA-1 [4], can also be used (in which case HASHLEN will be
20). The only requirement is that the result be suitably random – in the sense that the outputs
from a set uniformly distributed inputs are themselves uniformly distributed, and that a single
bit change in the input can be expected to cause half of the output bits to change.

Obtaining IEEE 802 Addresses

The following URL contains information on how to obtain an IEEE 802 address block. Cost is
$1000 US.

http://stdsbbs.ieee.org/products/oui/forms/index.html

Security Considerations

It should not be assumed that UUIDs are hard to guess; they should not be used as capabilities.

Wired for Management Baseline Page A 10

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Acknowledgements

This document draws heavily on the OSF DCE specification for UUIDs. Ted Ts'o provided
helpful comments, especially on the byte ordering section which we mostly plagiarized from a
proposed wording he supplied (all errors in that section are our responsibility, however).

References

[1] Lisa Zahn, et. al., Network Computing Architecture, Prentice Hall, Englewood Cliffs, NJ,
1990

[2] DCE: Remote Procedure Call, Open Group CAE Specification C309 ISBN 1-85912-041-5
28cm. 674p. pbk. 1,655g. 8/94

[3] R. Rivest, RFC 1321, “The MD5 Message-Digest Algorithm”, 04/16/1992.

[4] SHA Spec - TBD

Authors’ addresses

Paul J. Leach
Microsoft
1 Microsoft Way
Redmond, WA, 98052, U.S.A.
Email: paulle@microsoft.co

Rich Salz
The Open Group
11 Cambridge Center
Cambridge, MA 02142, U.S.A.
Email r.salz@opengroup.org

Appendix A – UUID Reference Implementation

/*
** Copyright (c) 1990- 1993, 1996 Open Software Foundation, Inc.
** Copyright (c) 1989 by Hewlett-Packard Company, Palo Alto, Ca. &
** Digital Equipment Corporation, Maynard, Mass.
** To anyone who acknowledges that this file is provided “AS IS”
** without any express or implied warranty: permission to use, copy,
** modify, and distribute this file for any purpose is hereby
** granted without fee, provided that the above copyright notices and
** this notice appears in all source code copies, and that none of
** the names of Open Software Foundation, Inc., Hewlett-Packard
** Company, or Digital Equipment Corporation be used in advertising
** or publicity pertaining to distribution of the software without
** specific, written prior permission. Neither Open Software
** Foundation, Inc., Hewlett-Packard Company, nor Digital Equipment
** Corporation makes any representations about the suitability of
** this software for any purpose.
*/

Wired for Management Baseline Page A 11

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

#include <sys/types.h>
#include <sys/time.h>

typedef unsigned long unsigned32;
typedef unsigned short unsigned16;
typedef unsigned char unsigned8;
typedef unsigned char byte;

#define CLOCK_SEQ_LAST 0x3FFF
#define RAND_MASK CLOCK_SEQ_LAST

typedef struct _uuid_t {
 unsigned32 time_low;
 unsigned16 time_mid;
 unsigned16 time_hi_and_version;
 unsigned8 clock_seq_hi_and_reserved;
 unsigned8 clock_seq_low;
 byte node[6];
} uuid_t;

typedef struct _unsigned64_t {
 unsigned32 lo;
 unsigned32 hi;
} unsigned64_t;

/*
** Add two unsigned 64-bit long integers.
*/
#define ADD_64b_2_64b(A, B, sum) \
 { \
 if (!(((A)->lo & 0x80000000UL) ^ ((B)->lo &
0x80000000UL))) { \
 if (((A)->lo&0x80000000UL)) { \
 (sum)->lo = (A)->lo + (B)->lo; \
 (sum)->hi = (A)->hi + (B)->hi + 1; \
 } \
 else { \
 (sum)->lo = (A)->lo + (B)->lo; \
 (sum)->hi = (A)->hi + (B)->hi; \
 } \
 } \
 else { \
 (sum)->lo = (A)->lo + (B)->lo; \
 (sum)->hi = (A)->hi + (B)->hi; \
 if (!((sum)->lo&0x80000000UL)) (sum)->hi++; \
 } \
 }

/*
** Add a 16-bit unsigned integer to a 64-bit unsigned integer.
*/
#define ADD_16b_2_64b(A, B, sum) \
 { \
 (sum)->hi = (B)->hi; \
 if ((B)->lo & 0x80000000UL) { \
 (sum)->lo = (*A) + (B)->lo; \
 if (!((sum)->lo & 0x80000000UL)) (sum)->hi++; \
 } \
 else \
 (sum)->lo = (*A) + (B)->lo; \

Wired for Management Baseline Page A 12

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

 }

/*
** Global variables.
*/
static unsigned64_t time_last;
static unsigned16 clock_seq;

static void
mult32(unsigned32 u, unsigned32 v, unsigned64_t *result)
{
 /* Following the notation in Knuth, Vol. 2. */
 unsigned32 uuid1, uuid2, v1, v2, temp;

 uuid1 = u >> 16;
 uuid2 = u & 0xFFFF;
 v1 = v >> 16;
 v2 = v & 0xFFFF;
 temp = uuid2 * v2;
 result->lo = temp & 0xFFFF;
 temp = uuid1 * v2 + (temp >> 16);
 result->hi = temp >> 16;
 temp = uuid2 * v1 + (temp & 0xFFFF);
 result->lo += (temp & 0xFFFF) << 16;
 result->hi += uuid1 * v1 + (temp >> 16);
}

static void
get_system_time(unsigned64_t *uuid_time)
{
 struct timeval tp;
 unsigned64_t utc, usecs, os_basetime_diff;

 gettimeofday(&tp, (struct timezone *)0);
 mult32((long)tp.tv_sec, 10000000, &utc);
 mult32((long)tp.tv_usec, 10, &usecs);
 ADD_64b_2_64b(&usecs, &utc, &utc);
 /* Offset between UUID formatted times and Unix formatted
times.
 * UUID UTC base time is October 15, 1582.
 * Unix base time is January 1, 1970. */
 os_basetime_diff.lo = 0x13814000;
 os_basetime_diff.hi = 0x01B21DD2;
 ADD_64b_2_64b(&utc, &os_basetime_diff, uuid_time);
}

/*
** See “The Multiple Prime Random Number Generator” by Alexander
** Hass pp. 368-381, ACM Transactions on Mathematical Software,
** 12/87.
*/
static unsigned32 rand_m;
static unsigned32 rand_ia;
static unsigned32 rand_ib;
static unsigned32 rand_irand;

static void
true_random_init(void)
{
 unsigned64_t t;

Wired for Management Baseline Page A 13

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

 unsigned16 seed;

 /* Generating our 'seed' value Start with the current time, but,
 * since the resolution of clocks is system hardware dependent
and
 * most likely coarser than our resolution (10 usec) we 'mixup'
the
 * bits by xor'ing all the bits together. This will have the
effect
 * of involving all of the bits in the determination of the seed
 * value while remaining system independent. Then for good
measure
 * to ensure a unique seed when there are multiple processes
 * creating UUIDs on a system, we add in the PID.
 */
 rand_m = 971;
 rand_ia = 11113;
 rand_ib = 104322;
 rand_irand = 4181;
 get_system_time(&t);
 seed = t.lo & 0xFFFF;
 seed ^= (t.lo >> 16) & 0xFFFF;
 seed ^= t.hi & 0xFFFF;
 seed ^= (t.hi >> 16) & 0xFFFF;
 rand_irand += seed + getpid();
}

static unsigned16
true_random(void)
{
 if ((rand_m += 7) >= 9973)
 rand_m -= 9871;
 if ((rand_ia += 1907) >= 99991)
 rand_ia -= 89989;
 if ((rand_ib += 73939) >= 224729)
 rand_ib -= 96233;
 rand_irand = (rand_irand * rand_m) + rand_ia + rand_ib;
 return (rand_irand >> 16) ^ (rand_irand & RAND_MASK);
}

/*
** Startup initialization routine for the UUID module.
*/
void
uuid_init(void)
{
 true_random_init();
 get_system_time(&time_last);
#ifdef NONVOLATILE_CLOCK
 clock_seq = read_clock();
#else
 clock_seq = true_random();
#endif
}

static int
time_cmp(unsigned64_t *time1, unsigned64_t *time2)
{
 if (time1->hi < time2->hi) return -1;
 if (time1->hi > time2->hi) return 1;

Wired for Management Baseline Page A 14

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

 if (time1->lo < time2->lo) return -1;
 if (time1->lo > time2->lo) return 1;
 return 0;
}

static void new_clock_seq(void)
{
 clock_seq = (clock_seq + 1) % (CLOCK_SEQ_LAST + 1);
 if (clock_seq == 0) clock_seq = 1;
#ifdef NONVOLATILE_CLOCK
 write_clock(clock_seq);
#endif
}

void uuid_create(uuid_t *uuid)
{
 static unsigned64_t time_now;
 static unsigned16 time_adjust;
 byte eaddr[6];
 int got_no_time = 0;

 get_ieee_node_identifier(&eaddr); /* TO BE PROVIDED */

 do {
 get_system_time(&time_now);
 switch (time_cmp(&time_now, &time_last)) {
 case -1:
 /* Time went backwards. */
 new_clock_seq();
 time_adjust = 0;
 break;
 case 1:
 time_adjust = 0;
 break;
 default:
 if (time_adjust == 0x7FFF)
 /* We're going too fast for our clock; spin. */
 got_no_time = 1;
 else
 time_adjust++;
 break;
 }
 } while (got_no_time);

 time_last.lo = time_now.lo;
 time_last.hi = time_now.hi;

 if (time_adjust != 0) {
 ADD_16b_2_64b(&time_adjust, &time_now, &time_now);
 }

 /* Construct a uuid with the information we've gathered
 * plus a few constants. */
 uuid->time_low = time_now.lo;
 uuid->time_mid = time_now.hi & 0x0000FFFF;
 uuid->time_hi_and_version = (time_now.hi & 0x0FFF0000) >> 16;
 uuid->time_hi_and_version |= (1 << 12);
 uuid->clock_seq_low = clock_seq & 0xFF;
 uuid->clock_seq_hi_and_reserved = (clock_seq & 0x3F00) >> 8;
 uuid->clock_seq_hi_and_reserved |= 0x80;

Wired for Management Baseline Page A 15

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

 memcpy(uuid->node, &eaddr, sizeof uuid->node);
}

Wired for Management Baseline Page B 1

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Attachment B
Cross Mapper Considerations

This attachment establishes guidelines for constructing cross mapper solutions between CIM
and DMI in a Windows environment. Current instrumentation solutions based on DMI and
SNMP are receiving widespread deployment and use. As with all PC technologies, advances
are made, and with Windows, come two new management technologies:

n Common Information Model Object Manager (CIMOM) - a management agent that
manages objects based on the Common Information Model (CIM) schema.

n Windows Management Interface (WMI) - an instrumentation interface (an adjunct to the
management agent) for instrumenting kernel-mode devices.

To make the best use of new management technologies delivered in Windows operating
systems and to use the existing value of industry investments in managed systems, this
attachment describes new technologies and sets out new recommendations to:

n Ensure the smooth migration and integration of existing instrumentation solutions with
emerging instrumentation solutions on new Windows operating systems.

n Define how platforms with new Windows operating systems are made universally
manageable by both existing DMI-based management applications and new CIMOM-
based management applications.

n Allow the migration to new Windows instrumentation mechanisms while preserving the
value of the industry’s investment in DMI instrumentation.

Common Information Model

At the heart of the new management infrastructure is the Common Information Model (CIM).
CIM is an object oriented schema for management, which the industry is standardizing through
the efforts of the Desktop Management Task Force (DMTF). Representation of manageable
data in Object Managers using CIM will provide powerful new capabilities for delivering
management solutions.

Windows operating systems will include an object manager called the Common Information
Model Object Manager (CIMOM). CIMOM will allow data to be published by a number of
instrumentation means such as the DMI, WMI (Windows Management Interface), SNMP and
other object providers.

Three components are needed to deliver instrumentation capability:

1. Instrumentation Code - Platform specific and OS specific software that provides the
management data.

Wired for Management Baseline Page B 2

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

2. Management Data - The set of data used to describe and manage management
components. This baseline defines a baseline set of the data that a management application
can use to make platforms universally manageable.

3. Management Agent - provides means for management applications to access the
management data and for instrumentation to make the management data available.

The remainder of this attachment discusses how these three areas are addressed for new
Windows operating systems.

Windows Management Framework

DMI management applications should be able to access management information published
through CIMOM, and CIMOM applications should be able to access the management
information published through DMI. This requires two new elements in the management
framework: the DMI Provider and the CIMOM Provider. Collectively, these are called “Cross-
mappers”. The overall architecture is described pictorially in Figure B-1 below.

Data and
Schema

Data and
SchemaCIM Based Object

Manager

Object Providers
Component

Instrumentation

DMI Service Provider

DMI
Provider

CIM
Provider

HW AppsOSHWAppsOS

DMI
Apps

CIM based
Apps

- WfM 2.0 instrumentation
components
- CIM instrumentation components

- Cross-mapping providers

Figure B-1 Windows Management Architecture

The DMI Provider appears as an object provider to CIMOM. It treats DMI as a source of
information with which to provide objects to the CIM schema. The DMTF CIM sub-committee
is currently defining the mapping of DMTF Standard Groups to CIM objects. To make a DMI
proprietary group visible through CIMOM, a MOF file must be registered in the CIM schema.

The CIMOM Provider appears to the DMI Service Provider as DMI-CI instrumentation. It
treats CIMOM as a source of data with which to fill out the DMI groups. Data that is provided
in certain standard CIM classes are automatically mapped to the appropriate DMI standard
groups. Custom, or vendor-unique, CIM data are easily mapped to DMI with minimal
developer effort. This mapping is done through the standard MIF file description and
registration with the DMI Service Provider.

Wired for Management Baseline Page B 3

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Instrumentation for Windows Operating Systems

Management Data

The specific requirements for instrumentation are based on platform type and are defined in the
Desktop, Mobile, and Server checklists. These checklists list the standard DMTF groups that
must be instrumented and deployed on Baseline-compliant systems.

Through the cross-mappers, this data can be provided by a combination of CIMOM Data
Provider, WMI Data Provider, and DMI instrumentation code making the data visible to both
CIMOM and DMI management applications

Events

Events can be delivered through either the DMI 2.00 SP or through CIMOM. The cross-
mappers will provide DMI events to CIMOM and CIMOM events to DMI.

Dynamic Devices

This Baseline requires that instrumentation support devices that can be inserted and removed
(for example, PC Card, USB, hot swap drives, 1394). Upon such insertion or removal,
instrumentation must represent the associated management data additions or deletions. For
CIMOM, this requires the instrumentation to add or delete object instances as appropriate
when hardware is inserted or removed. The cross-mappers will automatically reflect these
changes to both CIMOM and DMI applications.

Management Agent

To enable cross-mapping in DMI managed environments, the DMI 2.0 SP must be installed
and active when the operating system boots. If the required data are also supplied by WMI or
Object Providers, CIMOM must also be installed and active when the operating system boots.

Other management agents such as SNMP may also be loaded to support a broader range of
management environments. SNMP “mappers” to DMI and to CIM may also be provided.

Instrumentation Code

So long as the required management data is provided, hardware and software vendors may
write instrumentation code through one of three means:

1. Object Providers. Object providers are used to instrument anything other than kernel-mode
managed components.

2. WMI. The Windows Management Interface is used to instrument kernel-mode managed
components (that is, drivers).

3. DMI. DMI can be used to instrument both kernel-mode and user-mode managed
components.

Cross-Mappers

The cross-mappers are instrumentation code. From the perspective of CIMOM, the DMI
Provider instruments a source of data provided by DMI. From the perspective of DMI, the

Wired for Management Baseline Page B 4

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

CIMOM Provider instruments a source of data provided by CIMOM. To enable cross
mapping between CIMOM and DMI, the cross-mappers must be installed on the managed
platform. The application used on the Managed platform determines which cross-mapper is
needed. This is a customer configuration choice.

Instrumentation Deployment

The instrumentation and associated drivers are both platform- and OS-dependent. They must
be deployed by the platform vendor along with the platform. When the management agent is
made active, its associated instrumentation must also be made available for use. This enables
any compliant management application to access and manage the system via its
instrumentation as soon as the system is up and running.

Windows Instrumentation References

The following represents some of the references, services, and tools available to help build
instrumentation that works with Windows operating systems.

Web-Based Enterprise Management information

http://wbem.freerange.com
http://www.microsoft.com/management/wbem/
http:www.dmtf.org/work/cim.html

Wired for Management Baseline, Version 1.x, Intel Corporation.

http://www.intel.com/managedpc/

Wired for Management Baseline Page C 1

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Attachment C
WfM DMI Mapping to CIM and
SNMP

This appendix includes two tables identifying the relationship between the WfM Baseline DMI
groups and the corresponding entities in SNMP and CIM. The first table identifies the
relationship between the WfM groups and the SNMP Object Identifiers specified by [SNMP to
DMI] The second table maps the WfM groups to the corresponding CIM Core and Common
Model elements.

WfM Required Group SNMP Object Identifier

DMTF|ComponentID|001 1.3.6.1.4.1.412.2.1.1
DMTF|Cooling Device|002 1.3.6.1.4.1.412.2.4.17
DMTF|Cooling Unit Global Table|001 1.3.6.1.4.1.412.2.4.67
DMTF|Disks Mapping Table|001 1.3.6.1.4.1.412.2.4.23
DMTF|Disks|002 1.3.6.1.4.1.412.2.4.22
DMTF|Dynamic States|001 1.3.6.1.4.1.412.2.8.2
DMTF|FRU|002 1.3.6.1.4.1.412.2.4.29
DMTF|General Information|001 1.3.6.1.4.1.412.2.4.1
DMTF|Keyboard|003 1.3.6.1.4.1.412.2.4.28
DMTF|Mass Store Array Info Table|001 1.3.6.1.4.1.412.2.4.46
DMTF|Mass Store Logical Drives Table|001 1.3.6.1.4.1.412.2.4.45
DMTF|Mass Store Mapping Table|001 1.3.6.1.4.1.412.2.4.43
DMTF|Mass Store Segment Table|001 1.3.6.1.4.1.412.2.4.44
DMTF|Memory Array Mapped Addresses|001 1.3.6.1.4.1.412.2.4.34
DMTF|Memory Device Mapped Addresses|001 1.3.6.1.4.1.412.2.4.36
DMTF|Memory Device|001 1.3.6.1.4.1.412.2.4.35
DMTF|Monitor Resolutions|002 1.3.6.1.4.1.412.2.6.2
DMTF|Motherboard|001 1.3.6.1.4.1.412.2.4.6
DMTF|Network Adapter 802 Port|001 1.3.6.1.4.1.412.2.2.1
DMTF|Network Adapter Driver|001 1.3.6.1.4.1.412.2.2.3
DMTF|Operating System|001 1.3.6.1.4.1.412.2.4.2
DMTF|Operational State|003 1.3.6.1.4.1.412.2.4.30
DMTF|Parallel Ports|003 1.3.6.1.4.1.412.2.4.10
DMTF|Partition|001 1.3.6.1.4.1.412.2.4.24
DMTF|Physical Container Global Table|001 1.3.6.1.4.1.412.2.4.63
DMTF|Physical Expansion Sites Table|001 1.3.6.1.4.1.412.2.4.65
DMTF|Physical Memory Array|001 1.3.6.1.4.1.412.2.4.33
DMTF|Physical Memory|002 1.3.6.1.4.1.412.2.4.7

DMTF|Pointing Device|001 1.3.6.1.4.1.412.2.8.5
DMTF|Portable Battery|001 1.3.6.1.4.1.412.2.8.1

Wired for Management Baseline Page C 2

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

DMTF|Power Supply|002 1.3.6.1.4.1.412.2.4.16
DMTF|Power Unit Global Table|001 1.3.6.1.4.1.412.2.4.66
DMTF|Processor|003 1.3.6.1.4.1.412.2.4.5
DMTF|Serial Ports|003 1.3.6.1.4.1.412.2.4.11
DMTF|System BIOS|001 1.3.6.1.4.1.412.2.4.3
DMTF|System Cache|002 1.3.6.1.4.1.412.2.4.9
DMTF|System Cache|003 1.3.6.1.4.1.412.2.4.9
DMTF|System Hardware Security|001 1.3.6.1.4.1.412.2.4.49
DMTF|System Memory Settings|001 1.3.6.1.4.1.412.2.4.71
DMTF|System Power Controls|001 1.3.6.1.4.1.412.2.4.51
DMTF|System Resource Device Info|001 1.3.6.1.4.1.412.2.4.38
DMTF|System Resource DMA Info|001 1.3.6.1.4.1.412.2.4.42
DMTF|System Resource I/O Info|001 1.3.6.1.4.1.412.2.4.40
DMTF|System Resource IRQ Info|001 1.3.6.1.4.1.412.2.4.41
DMTF|System Resource Memory Info|001 1.3.6.1.4.1.412.2.4.39
DMTF|System Resources 2|001 1.3.6.1.4.1.412.2.4.37
DMTF|System Resources Description|001 1.3.6.1.4.1.412.2.4.31
DMTF|System Resources|001 1.3.6.1.4.1.412.2.4.32
DMTF|System Slot|004 1.3.6.1.4.1.412.2.4.18
DMTF|System Slots|003 1.3.6.1.4.1.412.2.4.18
DMTF|Temperature Probe|001 1.3.6.1.4.1.412.2.4.54
DMTF|Video BIOS|001 1.3.6.1.4.1.412.2.4.20
DMTF|Video|002 1.3.6.1.4.1.412.2.4.19
DMTF|Voltage Probe|001 1.3.6.1.4.1.412.2.4.53

The following table identifies the relationship between the WfM Baseline DMI groups and the
appropriate CIM Core and Common Model entities. Note that when accessing data through
CIM Object Managers, the identified classes and properties must be provided to deliver the
baseline data. The actual data can be instrumented by DMI, SNMP, or native interfaces of the
CIM-based Object Managers, as long as they are appropriately mapped to the CIM Schema.

Some DMI attributes are not directly mapped in the CIM Schema and could be defined in
extension schemas by subclassing CIM objects to add new properties. DMTF will continue to
evolve the CIM Schema and improve the mapping coverage.

Group Name CIM Property

* Indicates that the attribute is not directly mapped in the CIM Schema but could be mapped by
appropriately defining properties in an object's instantiation or in an extension schema. All object
names should be preceded with a “CIM_” to be valid. This was omitted throughout this table for
brevity.

BIOS Characteristic|003

BIOS Characteristic Index BIOSFeatures and BIOSElements uniquely
identified by their key properties.

BIOS Number Characteristic is a property of BIOSFeature
directly. (N/A)

BIOS Characteristic BIOSFeature.Characteristics

BIOS Characteristic Description BIOSFeature.CharacteristicDescriptions

Wired for Management Baseline Page C 3

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

ComponentID|001

Manufacturer Product.Vendor, PhysicalElement.Manufacturer
Product Product.Name, ManagedSystemElement.Name,

OperatingSystem.OSType
Version Product.Version, PhysicalElement.Version,

SoftwareElement.Version,
OperatingSystem.Version

Serial Number Product.IdentifyingNumber,
PhysicalElement.SerialNumber,
SoftwareElement.SerialNumber

Installation ManagedSystemElement.InstallDate
Verify ManagedSystemElement.Status (Mapping is not

1-to-1 but similar info provided.)

Cooling Device|002

Cooling Device Table Index CoolingDevice uniquely identified by its key
properties.

FRU Group Index Requires instantiation of a FRU object and a
FRUPhysicalElements association to the
CoolingDevice's physical “realization”.
Alternately, the PhysicalElement(s) that realize
the CoolingDevice could be associated with
other Elements that are to be replaced as a
“set”, using the ReplacementSet object and the
ParticipatesInSet association (defined in the
Physical Model).

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

Cooling Unit Index Redundancy information is provided via
instantiation of an ExtraCapacityRedundancy or
SpareGroup. Redundancy relationship between
CoolingDevices indicated by instantiation of the
RedundancyComponent association.
RedundancyGroups have unique key properties

Cooling Device Type Indicated by instantiating the appropriate
CoolingDevice subclass.

Temperature Probe Index Indicated by instantiation of a
TemperatureSensor object and an
AssociatedSensor relationship(between the
TemperatureSensor and the CoolingDevice).

Cooling Unit Global Table|001- Is an instantiation of an ExtraCapacityRedundancy or
SpareGroup

Cooling Unit Index RedundancyGroups uniquely identified by their
key properties.

Cooling Unit Status Inherited from RedundancyGroup to
ExtraCapacityRedundancy or SpareGroup, the
RedundancyStatus property.

Wired for Management Baseline Page C 4

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Disks Mapping Table|001

Storage Type Indicated by instantiating the appropriate
MediaAccessDevice subclass and defining the
StorageExtents accessed by the Device. These
are identified by following the MediaPresent
associations from MediaAccessDevice

Disk Index A Disk is an instantiation of a StorageExtent or
one of its subclasses. It is related to a Partition
as described for Partition Index, directly below.

Partition Index Partitions can be built on lower level
StorageExtent(s). This is described using the
BasedOn relationship between Storage Extents.
Alternately, Partitions may be directly“realized”
on PhysicalMedia. This relationship is indicated
by the RealizesDiskPartition association, defined
in the Physical Model.

Disks|002

Storage Type Indicated by instantiating the appropriate
MediaAccessDevice subclass.

Disk Index Device uniquely identified by its key properties.
Storage Interface Type Information provided by following the

ControlledBy association from the
MediaAccessDevice to the Controller object that
manages it. The Controller.ProtocolSupported
property contains this data

Interface Description Inherited from ManagedSystemElement, the
Description property.

Media Loaded Information provided by following the
MediaPresent association between the
MediaAccessDevice and StorageExtents
accessed through the Device

Removable Drive Information found in Physical
Package.Removeable for the Package which
“realizes” the appropriate StorageExtent.

Removable Media MediaAccessDevice.Capabilities
DeviceID Inherited from LogicalDevice to

MediaAccessDevice, the DeviceID property.
* Logical Unit Number Could be part of the LogicalDevice.DeviceID

property for MediaAccessDevice.
* Number of Physical Cylinders (Not typically instrumented)

* Number of Phys Sectors/Track (Not typically instrumented)

* Number of Physical Heads (Not typically instrumented)

* Phys Cylinder for Write
Precompensation

(Not typically instrumented)

* Physical Cylinder for Landing Zone (Not typically instrumented)

* Sector Size (Not typically instrumented) Could instantiate a
StorageExtent or one of its subclasses (such as
PhysicalExtent or AggregatePExtent) using
“sector size” as the StorageExtent.BlockSize.

Total Physical Size Calculated by multiplying
StorageExtent.BlockSize by
StorageExtent.NumberOfBlocks.

Number of Current Bad Blocks Obtained by totaling all StorageError objects
associated with the StorageExtent

Wired for Management Baseline Page C 5

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

 or Sectors (discovered by following the StorageDefect
relationship).

Partitions Partitions can be built on lower level
StorageExtent(s). This is described using the
BasedOn relationship between Storage Extents.
Alternately, Partitions may be directly “realized”
on PhysicalMedia. This relationship is indicated
by the RealizesDiskPartition association. To
obtain the total number of Partitions, one must
follow the appropriate associations from
ComputerSystem to its component
LogicalDevices and total the number of
Partitions found.

Physical Location Indicated by instantiation of Location object(s)
associated with a PhysicalMedia object or with a
PhysicalPackage that “realizes” the
MediaAccessDevice for this Disk (both
PhysicalMedia and PhysicalPackage are
subclasses of PhysicalElement). A Storage
Extent is associated with a PhysicalMedia object
using the Realizes relationship or one of its
subclasses (for example, RealizesPExtent).
Therefore, one can follow the Realizes
relationship from the StorageExtent to the
PhysicalElement and then follow the
PhysicalElement's associations to the Location
object.

FRU Group Index Requires instantiation of a FRU object and a
FRUPhysicalElements association to the Disk's
physical “realization”. Alternately, the
PhysicalElement(s) that realize the Disk could
be associated with other Elements that are to be
replaced as a “set”, using the ReplacementSet
object and the ParticipatesInSet association
(defined in the Physical Model).

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

* Security Settings

Dynamic States|001

A/C Line Status On- vs off-line information available by reading
the Battery.TimeOnBattery property.

Docking Status Addressed using the Docked association
between Chassis (a subclass of
PhysicalElement).

FRU|002

FRU Index FRU is uniquely identified by its key properties.
Device Group Index The FRUPhysicalElements association identifies

the Elements that compose the FRU.
Description FRU.Description
Manufacturer FRU.Vendor

* Model Recommend using the Product object to store
Model-related information and using the
ProductFRU relationship to associate the FRU
and therefore obtain this data.

Part Number FRU.FRUNumber

Wired for Management Baseline Page C 6

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

FRU Serial Number FRU.IdentifyingNumber
Revision Level FRU.RevisionLevel

* Warranty Start Date (Not typically instrumented)

* Warranty Duration (Not typically instrumented)
Support Phone Number Support is associated with a Product, not a

FRU. A FRU is applied to a Product. This
relationship is indicated using the ProductFRU
association. Support phone number would be
found in SupportAccess.CommunicationInfo for
the object where the CommunicationMode
property = “Phone”.

FRU Internet URL Support is associated with a Product, not a
FRU. A FRU is applied to a Product. This
relationship is indicated using the ProductFRU
association. Support URL information would be
found in SupportAccess.CommunicationInfo for
the object where the the CommunicationMode
property = “Web Page”.

General Information|001

System Name System.Name (CIM Name is part of the System
key and should be created using the naming
heuristic defined by the schema.)

System Location Indicated by instantiation of Location object(s)
associated with one or more PhysicalPackages
(subclasses of PhysicalElement) that “realize”
the System. A ComputerSystem is directly
associated with a PhysicalPackage via an
instantiation of the ComputerSystemPackage
Dependency relationship (defined in the Physical
Model). From the PhysicalPackage, one can
follow its associations to Location object(s).

System Primary User Name System.PrimaryOwnerName
System Primary User Phone System.PrimaryOwnerContact
System Bootup Time OperatingSystem.LastBootUpTime
System Date Time OperatingSystem.LocalDateTime

Keyboard|003

Keyboard Layout Keyboard.Layout

Keyboard Type Inherited from ManagedSystemElement, the
Description property.

Keyboard Connector Type Must follow the Realizes relationship from the
Keyboard to its PhysicalElement and then query
its associated PhysicalConnectors. Alternately,
one could enumerate the PhysicalConnectors for
the PhysicalPackage(s) that realize the
Keyboard's scoping ComputerSystem

FRU Group Index Requires instantiation of a FRU object and a
FRUPhysicalElements association to the
Keyboard's physical “realization”. Alternately, the
PhysicalElement(s) that realize the Keyboard
could be associated with other Elements that are
to be replaced as a “set”, using the
ReplacementSet object and the
ParticipatesInSet association (defined in the
Physical Model).

Wired for Management Baseline Page C 7

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

Security Settings UserDevice.IsLocked (Mapping is not 1-to-1 but
relevant data is provided.)

Memory Array Mapped Addresses|001

Mem Array Mapped Addr Table
Index

Memory and memory groupings uniquely
defined by their key properties.

Memory Array Index Arrays, per se, are not modeled. However,
system address info, etc is included in the basic
Memory object definition. One could create both
Memory Devices and Memory Arrays as
instances of Volatile/NonVolatileStorage or
Cache Memory. Explicit objects are not required.
A Memory Array would be associated with (or
built on) one or more Memory Devices using the
“BasedOn” relationship.

Mapped Range Starting Address Memory.SystemStartingAddress
Mapped Range Ending Address Memory.SystemEndingAddress
Partition ID PhysicalMemory.BankNumber

* Partition Width
Operational Group Index Operational state data is inherited as properties

of the LogicalDevice object.

Memory Device Mapped Addresses|001

Mem Dev Mapped Addr Table Index Memory and memory groupings uniquely
defined by their key properties.

Memory Device Set ID Memory and memory groupings uniquely
defined by their key properties. Device Sets are
addressed as ReplacementSet objects in the
Physical Model.

Partition PhysicalMemory.BankNumber
Mapped Range Starting Address Memory.SystemStartingAddress
Mapped Range Ending Address Memory.SystemEndingAddress
Partition Row Position PhysicalMemory.PositionInRow
Interleave Position PhysicalMemory.InterleavePosition

* Data Depth

Memory Device|001 - Can be VolatileStorage, NonVolatileStorage or CacheMemory

Memory Device Table Index Device uniquely identified by its key properties.
Memory Array Index Arrays, per se, are not modeled. One could

create both Memory Devices and Memory
Arrays as instances of
Volatile/NonVolatileStorage or CacheMemory

Device Locator Information available by traversing the Realizes
relationship from Logical to Physical Element
and then following the PhysicalElementLocation
association to a Location object.

Bank Locator Information available by traversing the Realizes
relationship from Logical to Physical Element
and then following the PhysicalElementLocation
association to a Location object.

Size Calculated by multiplying the inherited (from
StorageExtent) properties, BlockSize and
NumberOfBlocks.

Wired for Management Baseline Page C 8

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Form Factor PhysicalMemory.FormFactor
Total Width PhysicalMemory.TotalWidth
Data Width PhysicalMemory.DataWidth
Memory Type PhysicalMemory.MemoryType

* Type Detail
Device Set Modeled by instantiating the ReplacementSet

object and the ParticipatesInSet association
(defined in the Physical Model).

Device Error Type Memory.ErrorInfo

* Error Granularity
Last Error Update Memory.ErrorTime
Error Operation Memory.ErrorAccess
Error Data Size Memory.ErrorTransferSize
Error Data Memory.ErrorData
Vendor Syndrome Memory.AdditionalErrorData
Device Error Address Memory.ErrorAddress
Array Error Address Arrays, per se, are not modeled. One could

create both Memory Devices and Memory
Arrays as instances of
Volatile/NonVolatileStorage or CacheMemory

Error Resolution Memory.ErrorResolution
FRU Group Index Requires instantiation of a FRU object and a

FRUPhysicalElements association to the
Memory's physical “realization”. Alternately, the
PhysicalElements that realize the Memory could
be associated with other Elements that are to be
replaced as a “set”, using the ReplacementSet
object and the ParticipatesInSet association
(defined in the Physical Model).

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

Monitor Resolutions|002

Monitor Resolution Index The MonitorResolution object is uniquely defined
by its key properties.

Horizontal Resolution MonitorResolution.HorizontalResolution
Vertical Resolution MonitorResolution.VerticalResolution
Refresh Rate MonitorResolution.RefreshRate
Vertical scan mode MonitorResolution.ScanMode
Minimum Monitor Refresh Rate MonitorResolution.MinRefreshRate
Maximum Monitor Refresh Rate MonitorResolution.MaxRefreshRate

Motherboard|001- Modeled as a Card (HostingBoard boolean=TRUE), a subclass of
PhysicalElement

Number of Expansion Slots Card.NumberOfSlots
FRU Group Index Requires instantiation of a FRU object and a

FRUPhysicalElements association to the Card
that represents the Motherboard.

* Operational Group Index (Not typically instrumented) Since a
Motherboard is a hardware container only, it
does not have the operational characteristics of
a LogicalElement.

Wired for Management Baseline Page C 9

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Network Adapter 802 Port|001

Port Index Information available by traversing the Realizes
relationship from NetworkAdapter to its
PhysicalElement(s) and then following the
PhysicalElementLocation association to a
Location object which could describe the “port
index”. Alternately, the PhysicalElement could
have a Connector, found by traversing the
ConnectorOnPackage association. This
Connector's Location could identify “port index”.

Permanent Network Address NetworkAdapter.PermanentAddress
Current Network Address NetworkAdapter.NetworkAddresses
Connector Type Must follow the Realizes relationship from the

NetworkAdapter Device to its Physical Element
and then query its associated
PhysicalConnectors.

Data Rate NetworkAdapter.Speed

* Total Packets Transmitted
Total Bytes Transmitted EthernetAdapter.OctetsTransmitted

* Total Packets Received
Total Bytes Received EthernetAdapter.OctetsReceived
Total Transmit Errors Sum of all transmit error counts in

EthernetAdapter - for example,
InternalMACTransmitErrors or
CarrierSenseErrors.

Total Receive Errors Sum of all receive error counts in
EthernetAdapter - For example, AlignmentErrors
or FCSErrors.

* Total Host Errors
Total Wire Errors Sum of all wire error counts in EthernetAdapter -

For example, ExcessiveCollisions.

Network Adapter Driver|001

Driver Index Driver should be an instantiation of a
SoftwareElement and uniquely identified by its
key properties.

Driver Software Name Instantiation of a SoftwareElement, related to
the NetworkAdapter Device using the
DeviceSoftware Dependency association.
SoftwareElement has a Name property.

Driver Software Version SoftwareElement.Version
Driver Software Description Inherited from ManagedSystemElement, the

Description property.
Driver Size Size of memory to run, or disk space to install is

specified using the Application Model's
MemoryCheck and DiskSpaceCheck classes.
These are associated with SoftwareElement
using the SoftwareElementChecks relationship.

* Driver Interface Type

* Driver Interface Version

* Driver Interface Description

Wired for Management Baseline Page C 10

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Network Adapter Hardware|001

Partial, Network Topology For Ethernet and TokenRingAdapters,
information will be provided in the
MaximumSpeed property (to be defined in V2.1).

Future
* Transmission Capability

Network Adapter RAM Size Memory can be associated with a LogicalDevice
using the AssociatedMemory relationship.

Bus Type Indicated by traversing the Realizes relationship
from the NetworkAdapter to its
PhysicalElement(s) - which could be a Card
object directly or contained by a Card. Cards are
inserted into other Cards (for example, a
MotherBoard) at a SlotID. Also, the relationship
between a Card and a Slot is indicated via the
CardInSlot Dependency association. The Slot
object has various properties such as “bus type”
(Slot.ConnectorType).

Bus Width Indicated by traversing the Realizes relationship
from the NetworkAdapter to its
PhysicalElement(s) - which could be a Card
object directly or contained by a Card. Cards are
inserted into other Cards (for example, a
MotherBoard) at a SlotID. Also, the relationship
between a Card and a Slot is indicated via the
CardInSlot Dependency association. The Slot
object has various properties such as “bus
width” (Slot.DataWidth).

Operating System|001

Operating System Index OperatingSystem uniquely identified by its key
properties.

Operating System Name OperatingSystem.Name
Operating System Version Product.Version, OperatingSystem.Version
Primary Operating System InstalledOS.PrimaryOS, where InstalledOS

associates a Computer and an
OperatingSystem.

OS Boot Device Storage Type UnitaryComputerSystem.LastLoadInfo contains
the Device key of the initial load device.
Alternately, the currently executing OS is
indicated using the RunningOS association
(from ComputerSystem to OperatingSystem).
The FileSystem from which the OS boots is
indicated using the BootOSFromFS association.
The StorageExtent on which the FileSystem
resides is indicated by the ResidesOnExtent
association.

OS Boot Device Index Detail as above.
OS Boot Partition Index The currently executing OS is indicated using

the RunningOS association (from
ComputerSystem to OperatingSystem). The
FileSystem from which the OS boots is is
indicated using the BootOSFromFS association.
The StorageExtent on which the FileSystem
resides is indicated by the ResidesOnExtent
association. This StorageExtent could be a
Partition.

Wired for Management Baseline Page C 11

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Operating System Description Inherited from ManagedSystemElement, the
Description property.

Operational State|003

Operational State Instance Index Operational state data included in the properties
of LogicalDevice. No separate object.

Device Group Index LogicalDevice uniquely identified by its key
properties. Alternately, the Physical Elements
that should be replaced as a “set” are identified
using the Replacement Set object and the
ParticipatesInSet association (defined in the
Physical Model). A LogicalDevice is associated
with a PhysicalElement using the Realizes
relationship.

Operational Status LogicalDevice.StatusInfo

* Usage State N/A for most Devices.
Availability Status LogicalDevice.Availability

* Administrative Status N/A for most Devices. UserDevice has IsLocked
boolean.

Future Fatal Error Count Errors and events to be addressed in future CIM
release.

Future Major Error Count Errors and events to be addressed in future CIM
release.

Future Warning Error Count Errors and events to be addressed in future CIM
release.

Current Error Status Inherited from ManagedSystemElement, the
Status property for the LogicalDevice.

Future Device Predicted Failure Status To be addressed in V2.1 with the addition of
“Failure Predicted” to the Status property
enumeration of ManagedSystemElement.

Parallel Ports|003

Parallel Port Index ParallelController uniquely identified by its key
properties.

Parallel Base I/O Address MemoryMappedIO.StartingAddress - The
MemoryMappedIO object is found by following
the AllocatedResource relationships from the
ParallelController instance.

IRQ Used IRQ.IRQNumber - The IRQ object is found by
following the AllocatedResource relationships
from the ParallelController instance.

Logical Name Inherited from Logical Device to
ParallelController, the DeviceID property.

Connector Type Must follow the Realizes relationship from the
ParallelController to its Physical
Element and then query its associated
PhysicalConnectors.

Connector Pinout PhysicalConnector.ConnectorPinout - The
appropriate PhysicalConnector is found by
following the Realizes relationships from the
ParallelController instance.

DMA Support ParallelController.DMASupport
Parallel Port Capabilities ParallelController.Capabilities
Operational Group Index Operational state data is inherited as properties

of the LogicalDevice object.
* Parallel Port Security Settings

Wired for Management Baseline Page C 12

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Partition|002

Partition Index Partition uniquely identified using its key
properties.

Partition Name Inherited from LogicalDevice to Partition, the
DeviceID property.

Partition Size Inherited from StorageExtent, the product of
BlockSize and NumberOfBlocks.

Free Space FileSystem.AvailableSpace - File Systems have
a Dependency relationship (ResidesOnExtent) to
StorageExtent. Extents do not have “free space”
- File Systems do.

* Partition Label
File System As above, File Systems have a Dependency

relationship - ResidesOnExtent - to
StorageExtents.

Compressed FileSystem.CompressionMethod
Encrypted FileSystem.EncryptionMethod
Number Of Disks Occupied Partitions can be built on lower level

StorageExtent(s). This is described using the
BasedOn relationship between Storage Extents.
Alternately, Partitions may be directly realized
on PhysicalMedia. This relationship is indicated
by the RealizesDiskPartition association, defined
in the Physical Model. To obtain the number of
disks occupied follow these associations and
total the number of PhysicalMedia found.

Physical Container Global Table|002

Container or Chassis Type Chassis.ChassisType
Asset Tag Inherited from Physical Element, the Tag

property for the Chassis.
Chassis Lock Present Rack.LockPresent, Chassis.LockPresent
Bootup State The container/enclosure for a ComputerSystem

is indicated using the ComputerSystem Package
relationship. A ComputerSystem and/or its
OperatingSystem have a “bootup state” inherited
from ManagedSystemElement, the Status
property. (Not a 1-to-1 mapping but similar
information is provided.)

Power State Must follow the SystemDevice associations to
determine the Device components of the
Computer System. Can then check the
PowerSupply or Battery Devices' Status
properties, inherited from
ManagedSystemElement. (Not a 1-to-1
mapping, but similar info provided.)

Thermal State An enclosure or Chassis (PhysicalPackage) can
have an associated Temperature Sensor
LogicalDevice. This is indicated by the
PackageTempSensor Dependency association.
Thermal state can be determined by analyzing
the properties of the associated
TemperatureSensor object.

FRU Group Index Requires instantiation of a FRU object and a
FRUPhysicalElements association to the
appropriate PhysicalPackage or its subclasses.

Wired for Management Baseline Page C 13

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object. Could check the
operational data for both the ComputerSystem's
aggregated Devices and for its OperatingSystem

Container Index PhysicalElement and its subclasses uniquely
identified by their key properties.

Container Name Inherited from ManagedSystemElement, the
Name property.

Container Location Indicated by instantiation of Location object(s)
associated with one or more PhysicalPackages,
that make up the ComputerSystem hardware. A
ComputerSystem is associated with its
enclosure/container (ie, PhysicalPackage) using
the ComputerSystemPackage Dependency
relationship.

Container Security Status Rack.SecurityBreach, Chassis.SecurityBreach

Physical Memory Array|001 - Can be VolatileStorage, NonVolatileStorage or
CacheMemory

Memory Array Table Index Memory and memory groupings uniquely
defined by their key properties.

Memory Array Location Information available by traversing the Realizes
relationship from Logical to Physical Element
and then following the PhysicalElementLocation
association to a Location object.

Memory Array Use Information could be placed in the Purpose
property, inherited from StorageExtent to all
Memory classes. Alternately, this data is
available by examining the Memory subclass
that is instantiated (Volatile Storage, NonVolatile
Storage, Cache Memory) and checking whether
this Memory is associated with a Device or not
(for example, video memory would be
associated with a Video Controller using the
AssociatedMemory relationship).

Maximum Memory Capacity MemoryCard.MaxMemoryCapacity
Number of Memory Device Sockets Inherited from Card to MemoryCard, the

NumberOfSlots property.
Numb of Mem Dev Sockets Used Addressed by enumerating the MemoryOnCard

association between Memory components and a
HostingBoard or MemoryCard.

Memory Error Correction Memory.ErrorMethodology, an override of
StorageExtent's ErrorMethodology property.

Array Error Type Memory.ErrorInfo
Last Error Update Memory.ErrorTime
Error Operation Memory.ErrorAccess
Error Data Size Memory.ErrorTransferSize
Error Data Memory.ErrorData
Vendor Syndrome Memory.AdditionalErrorData
Error Address Memory.ErrorAddress
Error Resolution Memory.ErrorResolution

Wired for Management Baseline Page C 14

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

FRU Group Index Requires instantiation of a FRU object and a
FRUPhysicalElements association to the
Memory's physical “realization”. Alternately, the
PhysicalElement(s) that realize the Memory
(MemoryCards or PhysicalMemory) could be
associated with other Elements that are to be
replaced as a “set”, using the ReplacementSet
object and the ParticipatesInSet association
(defined in the Physical Model).

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

Pointing Device|001

Pointing Device Type Indicated by instantiation of the correct subclass
of the PointingDevice class.

Pointing Device Interface Information indicated by the type of Controller
associated with the PointingDevice as well as
PhysicalConnector information from the
Physical Model. Must follow the Realizes
relationship from the PointingDevice to its
PhysicalElement(s) and then query its
associated PhysicalConnectors. The associated
Controller is found by following the ControlledBy
association. Could also enumerate the
PhysicalConnectors for the PhysicalPackage(s)
that realize the Device's scoping
ComputerSystem.

Pointing Device IRQ IRQ.IRQNumber - The IRQ object is found by
following the AllocatedResource relationships
from the PointingDevice (or subclass) instance.

Pointing Device Buttons PointingDevice.NumberOfButtons
Pointing Device Port Name Information indicated by the Name property of

the Controller associated with the Pointing
Device. This is found by following the
ControlledBy association from the
PointingDevice.

Pointing Device Driver Name Instantiation of a SoftwareElement, related to
the PointingDevice using the DeviceSoftware
Dependency association. SoftwareElement has
a Name property.

Pointing Device Driver Version SoftwareElement.Version
FRU Group Index Requires instantiation of a FRU object and a

FRUPhysicalElements association to the
Device's physical “realization”. Alternately, the
PhysicalElement(s) that realize the
PointingDevice could be associated with other
Elements that are to be replaced as a “set”,
using the ReplacementSet object and the
ParticipatesInSet association (defined in the
Physical Model).

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

Security Settings UserDevice.IsLocked (Mapping is not 1-to-1 but
relevant data is provided.)

Portable Battery|001

Portable Battery Index Battery uniquely identified by its key properties.

Wired for Management Baseline Page C 15

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Portable Battery Location Indicated in an instantiation of a Location object
that is associated with a PhysicalElement that
represents the Battery. One can follow the
Realizes relationship from the Battery
LogicalDevice to the PhysicalElement, and then
follow the PhysicalElementLocation association
to the Location object.

Portable Battery Manufacturer Product.Vendor, PhysicalElement.Manufacturer

* Portable Batt Manufacture Date (Not typically instrumented)
Portable Battery Serial Number Product.IdentifyingNumber,

PhysicalElement.SerialNumber
Portable Battery Device Name Inherited from Managed System Element to

Battery, the Name property.
Portable Batt Device Chemistry Battery.Chemistry
Portable Batt Design Capacity Battery.DesignCapacity
Portable Batt Design Voltage Battery.DesignVoltage
Smart Battery Version Battery.SmartBatteryVersion
Full Charge Capacity Battery.FullChargeCapacity

* Remaining Capacity

* Maximum Error
Portable Battery Charging Status Battery.BatteryStatus
Remaining Battery Time Battery.EstimatedRunTime
Remaining Time to Full Battery Battery.TimeToFullCharge
Power Unit Index Batteries and their redundancy relationships

uniquely identified by their key properties. A
Battery's participation in a RedundancyGroup is
indicated by the RedundancyComponent
association.

Power Supply|002

Power Supply Index PowerSupply uniquely identified by its key
properties.

FRU Group Index Requires instantiation of a FRU object and a
FRUPhysicalElements association to the
Device's physical “realization”. Alternately, the
PhysicalElement(s) that realize the PowerSupply
could be associated with other Elements that are
to be replaced as a “set”, using the
ReplacementSet object and the
ParticipatesInSet association.

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

Power Unit Index RedundancyGroups uniquely identified by their
key properties. Either a Spare or an
ExtraCapacityRedundancyGroup would be
instantiated.

Partial Power Supply Type UPS or Battery identified by instantiation of an
UninterruptablePowerSupply or Battery Device.
Whether the Supply is Linear or Switching is
identified by the IsSwitchingSupply boolean.
(Most but not all info is mapped.)

Input Voltage Capability Description Info could be placed in
PowerSupply.Description, inherited from
Managed System Element.

Range 1 Input Voltage Low PowerSupply.Range1InputVoltageLow
Range 1 Input Voltage High PowerSupply.Range1InputVoltageHigh

Wired for Management Baseline Page C 16

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Range 1 Voltage Probe Index The AssociatedSupplyVoltageSensor
relationship indicates the VoltageSensor(s)
monitoring the PowerSupply. Whether
monitoring Range 1 or 2 indicated by the
MonitoringRange property of the association.

Range 1 Elect Current Probe Index The AssociatedSupplyCurrentSensor
relationship indicates the CurrentSensor(s)
monitoring the PowerSupply. Whether
monitoring Range 1 or 2 indicated by the
MonitoringRange property of the association.

Range 2 Input Voltage Low PowerSupply.Range2InputVoltageLow
Range 2 Input Voltage High PowerSupply.Range2InputVoltageHigh
Range 2 Voltage Probe Index The AssociatedSupplyVoltageSensor

relationship indicates the VoltageSensor(s)
monitoring the PowerSupply. Whether
monitoring Range 1 or 2 indicated by the
MonitoringRange property of the association.

Range 2 Current Probe Index The AssociatedSupplyCurrentSensor
relationship indicates the CurrentSensor(s)
monitoring the PowerSupply. Whether
monitoring Range 1 or 2 indicated by the
MonitoringRange property of the association.

Active Input Voltage Range PowerSupply.ActiveInputVoltage
Input Voltage Range Switching PowerSupply.TypeOfRangeSwitching
Range 1 Input Frequency Low PowerSupply.Range1InputFrequencyLow
Range 1 Input Frequency High PowerSupply.Range1InputFrequencyHigh
Range 2 Input Frequency Low PowerSupply.Range2InputFrequencyLow
Range 2 Input Frequency High PowerSupply.Range2InputFrequencyHigh
Total Output Power PowerSupply.TotalOutputPower

Power Unit Global Table|001- Is an instantiation of an ExtraCapacityRedundancy or
SpareGroup

Power Unit Index RedundancyGroups uniquely identified by their
key properties.

Power Unit Redundancy Status Inherited from RedundancyGroup to
ExtraCapacityRedundancy or SpareGroup, the
RedundancyStatus property.

Processor|004

Processor Index Processor uniquely identified by its key
properties.

Processor Type Processor.Role (however, Role is not
enumerated).

Processor Family Processor.Family
Processor Version Information PhysicalElement.Version / Could also be

included in the Processor.Name property,
inherited from ManagedSystemElement.

Maximum Speed Processor.MaxClockSpeed
Current Speed Processor.CurrentClockSpeed
Processor Upgrade Processor.UpgradeMethod

Wired for Management Baseline Page C 17

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

FRU Group Index Requires instantiation of a FRU object and a
FRUPhysicalElements association to the
Processor's physical “realization”. Alternately,
the PhysicalElement(s) that realize the
Processor could be associated with other
Elements that are to be replaced as a“set”, using
the ReplacementSet object and the
ParticipatesInSet association.

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

Level 1 Cache Index Info available by instantiating a CacheMemory
object and an AssociatedMemory relationship
between the Processor and CacheMemory.
CacheMemory.Level indicates Level 1, 2 or 3

Level 2 Cache Index As for L1 Cache, above.
Level 3 Cache Index As for L1 Cache, above.

Serial Ports|003

Serial Port Index SerialController uniquely identified by its key
properties.

Serial Base I/O Address MemoryMappedIO.StartingAddress - The
MemoryMappedIO object is found by following
the AllocatedResource relationships from the
SerialController instance.

IRQ Used IRQ.IRQNumber - The IRQ object is found by
following the AllocatedResource relationships
from the SerialController instance.

Logical Name Inherited from Logical Device to SerialController,
the DeviceID property.

Connector Type Must follow the Realizes relationship from the
SerialController to its PhysicalElement and then
query its associated PhysicalConnectors.

Maximum Speed SerialController.MaxBaudRate
Serial Port Capabilities SerialController.Capabilities
Operational Group Index Operational state data is inherited as properties

of the LogicalDevice object.
* Serial Port Security Settings

System BIOS|001

BIOS Index BIOSElement uniquely identified by its key
properties.

BIOS Manufacturer Inherited from SoftwareElement to
BIOSElement, the Manufacturer property.

BIOS Version Inherited from SoftwareElement to
BIOSElement, the Version property.

BIOS ROM Size Calculated by following the BIOSLoadedInNV
relationship from the BIOSElement to a
NonVolatileStorage Extent. ROM
Size=BIOSLoadedInNV.EndingAddress -
StartingAddress.

* BIOS Starting Address

* BIOS Ending Address

* BIOS Loader Version Could be addressed by creating a
SoftwareElement specific to BIOS loading.

* BIOS Release Date
Primary BIOS BIOSElement.PrimaryBIOS

Wired for Management Baseline Page C 18

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

System Cache|003

System Cache Index CacheMemory uniquely identified by its key
properties.

System Cache Level CacheMemory.Level
System Cache Speed PhysicalMemory.Speed
System Cache Size Inherited from StorageExtent to CacheMemory,

cache size is the product of the properties,
BlockSize (ie, bytes) and NumberOfBlocks.

System Cache Write Policy CacheMemory.WritePolicy
System Cache Error Correction Inherited from StorageExtent to CacheMemory,

the ErrorMethodology property.
FRU Group Index Requires instantiation of a FRU object and a

FRUPhysicalElements association to the
Memory's physical “realization”. Alternately, the
PhysicalElement(s) that realize the Memory
(MemoryCards or PhysicalMemory) could be
associated with other Elements that are to be
replaced as a “set”, using the ReplacementSet
object and the ParticipatesInSet association
(defined in the Physical Model).

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

System Cache Type CacheMemory.CacheType
Line Size CacheMemory.LineSize

* Volatility (Not typically instrumented)
Replacement Policy CacheMemory.ReplacementPolicy
Read Policy CacheMemory.ReadPolicy
Flush Timer CacheMemory.FlushTimer
Associativity CacheMemory.Associativity

System Hardware Security|001

* Power-On Password Status (Not typically instrumented)
Keyboard Password Status Keyboard.Password

* Administrator Password Status (Not typically instrumented)
Front Panel Reset Status UnitaryComputerSystem.ResetCapability

System Memory Settings|001

Total Physical Memory Sum of all VolatileStorage Memory extents
associated with a ComputerSystem. Could also
be determined by analyzing the PhysicalMemory
associated with Card(s), contained in one or
more Chassis(s) that represent a
ComputerSystem's hardware.

Free Physical Memory OperatingSystem.FreePhysicalMemory
Total Size of Paging Files OperatingSystem.SizeOfPagingFiles
Total Free Space in Paging Files OperatingSystem.FreeSpaceInPagingFiles
Total Virtual Memory OperatingSystem.TotalVirtualMemorySize
Free Virtual Memory OperatingSystem.FreeVirtualMemory

System Power Controls|001

Power Control Request UnitaryComputerSystem.SetPowerState method
Timed Power-On Available UnitaryComputerSystem.PowerManagementCap

abilities

Wired for Management Baseline Page C 19

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Time to Next Scheduled Power-On Time parameter for the
UnitaryComputerSystem.SetPowerState method

System Resource DMA Info|001

System Resource DMA Info Index DMA uniquely identified by its key properties.
DMA Transfer Width DMA.TransferWidths
DMA Address Size DMA.AddressSize
DMA Maximum Transfer Size DMA.MaxTransferSize

* DMA Transfer Preference
Future Bus Master In V2.1, will be addressed by subclassing the

AllocatedResource association for DMA
(AllocatedDMA) and adding a property,
BusMaster (boolean).

Byte Mode DMA.ByteMode
Word Mode DMA.WordMode
Channel Timing DMA.ChannelTiming
Type-C Timing DMA.TypeCTiming

System Resource Device Info|001

Resource User LogicalDevice.DeviceID

* Device ID Could be used in constructing the
LogicalDevice.DeviceID.

Device Serial Number PhysicalElement.SerialNumber

* Logical Device ID - Class Code Could be used in constructing the
LogicalDevice.DeviceID.

* Device Flags

* Device Number Could be used in constructing the
LogicalDevice.DeviceID.

* Device Number - Function Number Could be used in constructing the
LogicalDevice.DeviceID.

Bus Type Information available via the Physical Model -
following the Realizes relationship from the
LogicalDevice to its hardware/PhysicalElements.
Either the Physical Element is a Card object or
is contained by a Card. Cards are inserted into
other Cards (for example, a HostingBoard) at a
SlotID. Also, the relationship between a Card
and a Slot is indicated via the CardInSlot
Dependency association. Slots have various
properties including ConnectorType and SlotID.

* CM Reserved

System Resource I/O Info|001

System Resource I/O Info Index MemoryMappedIO uniquely identified by its key
properties.

* I/O Decode

System Resource IRQ Info|001

System Resource IRQ Info Index IRQ uniquely identified by its key properties.
Trigger Type IRQ.TriggerType
Trigger Level IRQ.TriggerLevel

Wired for Management Baseline Page C 20

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

System Resource Memory Info|001

System Resource Memory Info
Index

Memory and its subclasses uniquely identified
by their key properties.

* ISA/PCMCIA Range Descriptor

* EISA Range Descriptor

* Decode Support
Cacheable VolatileStorage.Cacheable
Cache Type VolatileStorage.CacheType
Read-Write Inherited from StorageExtent to Memory and its

subclasses, the Access property.

System Resources 2|001

System Resources Index N/A - This is a DMI row identifier only.
Resource User LogicalDevice.DeviceID
Resource Set N/A - Indicated as separate AllocatedResource

associations from LogicalDevices to
SystemResources. Regarding memory, there is
an AssociatedMemory Dependency relationship
between a Device and Memory. A “set” could be
modeled as Setting objects, grouped in a
Configuration.

Resource Assignment IRQ.Availability, DMA.Availability (“Temporary
Assigment” is not an enumerated value in the
CIM Device Model. Mapping is not 1-to-1 but
similar information is available.)

Resource Type Indicated by the SystemResource subclass that
is instantiated and associated with the
LogicalDevice.

Resource Number IRQ.IRQNumber, DMA.DMAChannel
Resource Info ID IRQ, DMA and MemoryMappedIO uniquely

identified by their key properties.
Start Address MemoryMappedIO.StartingAddress or regarding

memory - there is an AssociatedMemory
relationship between a Device and Memory.
How this Memory is “Realized” in physical
hardware or “BasedOn” lower level Storage
Extents is indicated by associations.

End Address MemoryMappedIO.EndingAddress and see the
discussion for “Start Address” above for
memory-related information.

Resource Size MemoryMappedIO.EndingAddress -
StartingAddress, BasedOn.EndingAddress -
StartingAddress

* Base Alignment
Shareable IRQ.Shareable
Shared Could be determined by examining the DMA or

IRQ.Availability properties and traversing the
AllocatedIRQ, AllocatedDMA, … associations
from the Resources to the using LogicalDevices.

System Slots|004

Slot Index Slot.Tag (inherited from PhysicalElement),
Slot.SlotID

Wired for Management Baseline Page C 21

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Slot Type Slot.ConnectorType (inherited from
PhysicalConnector), Slot.LengthAllowed

Slot Width Slot.MaxDataWidth
Current Usage Instance of CardInSlot associated with the

Slot.SlotID (or Slot.Tag) of interest, or an
instance of CardOnCard specifying the
appropriate SlotID.

Slot Description Info available via the associations specified for
“Current Usage”.

Slot Category Slot.ConnectorType (inherited from
PhysicalConnector). And, a
PhysicalComponentcan be directly associated
with a HostingBoard (Card) via the
PackagedComponent relationship (not the
CardOnCard association). PackagedComponent
indicates that the hardware is integrated directly
by the Card/HostingBoard

Virtual Slot A PhysicalComponent can be directly
associated with a HostingBoard/Card via the
PackagedComponent relationship (not the
CardOnCard association). PackagedComponent
indicates that the hardware is integrated by the
Card / Physical Package.

Resource User ID Indicated by the “Realizes” association from a
PhysicalElement (ie, a Card) to the
LogicalDevices that are instantiated because
that PhysicalElement is in a System.

Vcc Mixed Voltage Support Slot.VccMixedVoltageSupport
Vpp Mixed Voltage Support Slot.VppMixedVoltageSupport
Slot Thermal Rating Slot.ThermalRating

Temperature Probe|001

Temperature Probe Table Index TemperatureSensor uniquely identified by its key
properties.

Temperature Probe Location A TemperatureSensor is “Realized” in a
PhysicalElement. This PhysicalElement can
have an associated Location.

Temperature Probe Description Inherited from ManagedSystemElement to
TemperatureSensor, the Description property.

Temperature Status Can be determined by examining the properties
of TemperatureSensor.

Temp Probe Temp Reading Inherited from NumericSensor, the
CurrentReading property.

Monitored Temp Nominal Reading Inherited from NumericSensor, the
NominalReading property.

Monitored Temp Normal Maximum Inherited from NumericSensor, the NormalMax
property.

Monitored Temp Normal Minimum Inherited from NumericSensor, the NormalMin
property.

Temperature Probe Maximum Inherited from NumericSensor, the
MaxReadable property.

Temperature Probe Minimum Inherited from NumericSensor, the MinReadable
property.

...Lower Threshold-Non-Critical Inherited from NumericSensor, the
LowerThresholdNonCritical property.

…Upper Threshold-Non-Critical Inherited from NumericSensor, the
UpperThresholdNonCritical property.

…Lower Threshold-Critical Inherited from NumericSensor, the
LowerThresholdCritical property.

Wired for Management Baseline Page C 22

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

…Upper Threshold-Critical Inherited from NumericSensor, the
UpperThresholdCritical property.

…Lower Threshold-Non-recoverable Inherited from NumericSensor, the
LowerThresholdFatal property.

…Upper Threshold-Non-recoverable Inherited from NumericSensor, the
UpperThresholdFatal property.

Temperature Probe Resolution Inherited from NumericSensor, the Resolution
property.

Temperature Probe Tolerance Inherited from NumericSensor, the Tolerance
property.

Temperature Probe Accuracy Inherited from NumericSensor, the Accuracy
property.

FRU Group Index Requires instantiation of a FRU object and a
FRUPhysicalElements association to the
Probe's physical “realization”. Alternately, the
PhysicalElement(s) that realize the Probe could
be associated with other Elements that are to be
replaced as a “set”, using the ReplacementSet
object and the ParticipatesInSet association.

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

UPS Battery|001

Battery Status UninterruptablePowerSupply.RemainingCapacit
yStatus

Seconds on Battery UninterruptablePowerSupply.TimeOnBackup
Estimated Minutes Remaining UninterruptablePowerSupply.EstimatedRunTime
Estimated Charge Remaining UninterruptablePowerSupply.EstimatedChargeR

emaining
* Battery Voltage

* Battery Current
Temperature Probe Index Indicated by instantiation of a

TemperatureSensor object and an
AssociatedSensor relationship (between the
TemperatureSensor and the UPS Device).

FRU Group Index Requires instantiation of a FRU object and a
FRUPhysicalElements association to the UPS's
physical “realization”. Alternately, the
PhysicalElement(s) that realize the UPS could
be associated with other Elements that are to be
replaced as a “set”, using the ReplacementSet
object and the ParticipatesInSet association.

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

Video BIOS|001

Video BIOS Index VideoBIOSElement uniquely identified by its key
properties.

Video BIOS Manufacturer Inherited from SoftwareElement to
VideoBIOSElement, the Manufacturer property.

Video BIOS Version Inherited from SoftwareElement to
VideoBIOSElement, the Version property.

* Video BIOS Release Date
Video BIOS Shadowing State VideoBIOSElement.IsShadowed

Wired for Management Baseline Page C 23

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

Video|002

Video Index VideoController uniquely identified by its key
properties.

Video Type PCVideoController.VideoArchitecture
Current Video Mode PCVideoController.VideoMode
Minimum Refresh Rate VideoController.MinRefreshRate
Maximum Refresh Rate VideoController.MaxRefreshRate
Video Memory Type VideoController.VideoMemoryType
Video RAM Memory Size VideoController.MaxMemorySupported
Scan Mode VideoController.CurrentScanMode
Video Physical Location Must follow the Realizes relationship from the

LogicalDevice to a Physical Element. This
Element can be a Card or contained by a Card
(such as a HostingBoard or an add-in Card).
PhysicalElements can have Location objects
associated with them (via the
PhysicalElementLocation relationship).

Current Vertical Resolution VideoController.CurrentVerticalResolution
Current Horizontal Resolution VideoController.CurrentHorizontalResolution
Current Number of Bits per Pixel VideoController.CurrentBitsPerPixel
Current Number of Rows VideoController.CurrentNumberOfRows
Current Number of Columns VideoController.CurrentNumberOfColumns
Current Refresh Rate VideoController.CurrentRefreshRate
FRU Group Index Requires instantiation of a FRU object and a

FRUPhysicalElements association to the Video's
physical “realization”. Alternately, the
PhysicalElement(s) that realize the Video could
be associated with other Elements that are to be
replaced as a“set”, using the ReplacementSet
object and the ParticipatesInSet association.

Operational Group Idx Operational state data is inherited as properties
of the LogicalDevice object.

Voltage Probe|001

Voltage Probe Index VoltageSensor uniquely identified by its key
properties.

Voltage Probe Location A VoltageSensor is “Realized” in a
PhysicalElement. This PhysicalElement can
have an associated Location.

Voltage Probe Description Inherited from ManagedSystemElement to
VoltageSensor, the Description property.

Voltage Status Can be determined by examining the properties
of VoltageSensor.

Voltage Probe Voltage Level Inherited from NumericSensor, the
CurrentReading property.

Monitored Voltage Nominal Reading Inherited from NumericSensor, the
NominalReading property.

Monitored Voltage Normal
Maximum

Inherited from NumericSensor, the NormalMax
property.

Monitored Voltage Normal Minimum Inherited from NumericSensor, the NormalMin
property.

Voltage Probe Maximum Inherited from NumericSensor, the
MaxReadable property.

Voltage Probe Minimum Inherited from NumericSensor, the MinReadable
property.

Wired for Management Baseline Page C 24

Version 2.0 Release December 18, 1998
Copyright © 1998, Intel Corporation. All rights reserved.

...Lower Threshold-Non-Critical Inherited from NumericSensor, the
LowerThresholdNonCritical property.

…Upper Threshold-Non-Critical Inherited from NumericSensor, the
UpperThresholdNonCritical property.

…Lower Threshold-Critical Inherited from NumericSensor, the
LowerThresholdCritical property.

…Upper Threshold-Critical Inherited from NumericSensor, the
UpperThresholdCritical property.

…Lower Threshold-Non-recoverable Inherited from NumericSensor, the
LowerThresholdFatal property.

…Upper Threshold-Non-recoverable Inherited from NumericSensor, the
UpperThresholdFatal property.

Voltage Probe Resolution Inherited from NumericSensor, the Resolution
property.

Voltage Probe Tolerance Inherited from NumericSensor, the Tolerance
property.

Voltage Probe Accuracy Inherited from NumericSensor, the Accuracy
property.

FRU Group Index Requires instantiation of a FRU object and a
FRUPhysicalElements association to the
Probe's physical “realization”. Alternately, the
PhysicalElement(s) that realize the Probe could
be associated with other Elements that are to be
replaced as a “set”, using the ReplacementSet
object and the ParticipatesInSet association.

Operational Group Index Operational state data is inherited as properties
of the LogicalDevice object.

